• Title/Summary/Keyword: Pressure Interference

Search Result 235, Processing Time 0.025 seconds

A Study on the Tubular Alumina Liner Subjected to High Pressure and High Temperature (고온 고압용 튜브형 알루미나 라이너에 관한 연구)

  • Oh, Je-Hoon;Lee, Dai-Gil;Lee, Su-Jeong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.884-895
    • /
    • 1997
  • The finite element analysis for the tubular alumina liner which was shrink-fitted into a heat treated high speed steel (HSS) sleeve and subjected to high inner pressure and high temperature was performed. The parameters for the analysis were the interference between the alumina and the HSS, the temperature, the inner pressure, the coefficient of friction between the alumina and the HSS, and the taper at the sleeve ends. From the analysis, it was found that the tensile hoop stresses were decreased when the end parts of the HSS sleeve were tapered and the tensile stresses were decreased as the coefficient of friction between the alumina and the HSS was decreased. Also it was found that the alumina might be used as the structural liner for high pressure and high temperature when it was shrink-fitted into a heat treated HSS sleeve.

Estimation of wind pressure coefficients on multi-building configurations using data-driven approach

  • Konka, Shruti;Govindray, Shanbhag Rahul;Rajasekharan, Sabareesh Geetha;Rao, Paturu Neelakanteswara
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.127-142
    • /
    • 2021
  • Wind load acting on a standalone structure is different from that acting on a similar structure which is surrounded by other structures in close proximity. The presence of other structures in the surrounding can change the wind flow regime around the principal structure and thus causing variation in wind loads compared to a standalone case. This variation on wind loads termed as interference effect depends on several factors like terrain category, geometry of the structure, orientation, wind incident angle, interfering distances etc., In the present study, a three building configuration is considered and the mean pressure coefficients on each face of principle building are determined in presence of two interfering buildings. Generally, wind loads on interfering buildings are determined from wind tunnel experiments. Computational fluid dynamic studies are being increasingly used to determine the wind loads recently. Whereas, wind tunnel tests are very expensive, the CFD simulation requires high computational cost and time. In this scenario, Artificial Neural Network (ANN) technique and Support Vector Regression (SVR) can be explored as alternative tools to study wind loads on structures. The present study uses these data-driven approaches to predict mean pressure coefficients on each face of principle building. Three typical arrangements of three building configuration viz. L shape, V shape and mirror of L shape arrangement are considered with varying interfering distances and wind incidence angles. Mean pressure coefficients (Cp mean) are predicted for 45 degrees wind incidence angle through ANN and SVR. Further, the critical faces of principal building, critical interfering distances and building arrangement which are more prone to wind loads are identified through this study. Among three types of building arrangements considered, a maximum of 3.9 times reduction in Cp mean values are noticed under Case B (V shape) building arrangement with 2.5B interfering distance. Effect of interfering distance and building arrangement on suction pressure on building faces has also been studied. Accordingly, Case C (mirror of L shape) building arrangement at a wind angle of 45º shows less suction pressure. Through this study, it was also observed that the increase of interfering distance may increase the suction pressure for all the cases of building configurations considered.

Mutifunctional EMI Shielding and Sensing Applications based on Low-dimensional Nanomaterials (저차원 나노 소재 기반 다기능 전자파 차폐 및 센싱 응용기술)

  • Min, B.K.;Yi, Y.;Nguyen, V.T.;Mondal, S.;Choi, C.G.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • With the widespread use of high-performance electronics and mobile communications, electromagnetic interference (EMI) shielding has become crucial for protection against malfunctioning of electronic equipment and harmful effects to human health. In addition, smart sensor technologies will be rapidly developed in untact (non-contact) environments and personal healthcare fields. Herein, we introduce our recently developed technologies for flexible multifunctional EMI shielding, and highly sensitive wearable pressure-strain and humidity sensors realized using low-dimensional nanomaterials.

Development of a Digital Mock-up for Conceptual Design of a Submarine (잠수함 개념 설계를 위한 디지털 목업 개발)

  • Kim, Tae-Hwan;Chun, Sang-Hoo;Sheen, Dong-Mok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.152-157
    • /
    • 2009
  • In designing and manufacturing a submarine, an expensive real mock up is usually built as a reference because of the spatial constraints of a submarine. This paper presents an integrated and automated design process for a submarine that uses a digital mock up. Various equipment libraries are built for feature based design. Using the developed digital mock up, this paper shows various ways to verify the design, including a space analysis to check for any interference between pieces of equipment and the hull and an ergonomic analysis using lifelike dummies to examine the work space and operability. As a part of the integrated design system, a design automation system was also developed to generate surface point data for the outer hull, pressure hull, casing, and sail. The whole process was applied to the design of a submarine for verification.

Analysis of a Low Friction Piston Seal in Pneumatic Cylinders (공기압 실린더용 저마찰 피스톤 실의 특성해석)

  • Kim, D.T.;Zhang, Z.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2011
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seals in high speed pneumatic cylinders is analyzed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the squeeze type piston seal are simulated with variation of the seal radial installed interference, the operating pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the squeeze type piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.

Analysis of Piston Seal in High-Speed Pneumatic Cylinders (고속 공기압 실린더의 피스톤 실 특성 해석)

  • Zhang, Z.J.;Kim, D.T.;Han, S.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99-104
    • /
    • 2010
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seal in high speed pneumatic cylinders is analysed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the piston seal are simulated with variation of interference fits, supply pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.

  • PDF

Studies on the Differential Determination of cis-, and trans-Neopynamin and Fenitrothion by High Pressure Liguid Chromatography (고속 액체 크로마토그라피에 의한 cis- 및 trans-Neopynamin과 Fenitrothion의 분리 정량에 관한 연구)

  • 이왕규;정해수
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.117-122
    • /
    • 1980
  • A new application of high pressure liquid chromatography for the determination of fenitrothion and cis- and trans-neopynamin in insecticidal preparations was investigated. Optimum conditions for a good separation and determination were determined; solvent system: dichloromethane + n-hexane = 17 + 83; Bow rate: 0.5ml/min; column: u-porasil ($4mm{\times}3Ocm$); absorbance wavelength: 254nm; 0.05 AUFS and sample size: 30 ul. Recovery of fenicrothion, cis- and trans-neopynamin from mixed artificial preparations was 99.6%, 99.7% and 99.8% respectively. Also reproducibility tests showed that the coefficient of variation was 0.89% for fenitrothion, 0.74% cis-neopynamin and 1.1% for trans-neopynamin. There was no interference with insecticidal preparation containing DDVP, allethrin, S-421 and kerosene. HPLC method was rapid, accurate and it gave better reproducibility and higher sensitivity than any other analytical method. It was considered that HPLC could be greatly applied to the analysis of fenitrothion and neopynamin in insecticidal preparations.

  • PDF

Predictive Maintenance Plan based on Vibration Monitoring of Nuclear Power Plants using Industry 4.0 (4차 산업기술을 활용한 원전설비 진동감시기반 예측정비 방안)

  • Do-young Ko
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • Only about 10% of selected equipment in nuclear power plants are monitored by wiring to address failures or problems caused by vibration. The purpose is primarily for preventive maintenance, not for predictive maintenance. This paper shows that vibration monitoring and diagnosis using Industrial 4.0 enables the complete predictive maintenance for all vibrating equipments in nuclear power plants with the convergence of internet of things; wireless technology, big data through periodic collection and artificial intelligence. Predictive maintenance using wireless technology is possible in all areas of nuclear power plants and in all systems, but it should satisfy regulatory guides on electromagnetic interference and cyber security.

Intrusion detection based on the sound field variation of audible frequency band (가청 주파수대 음장 변화 측정 기반 침입 감지 기술)

  • Lee, Sung-Q.;Park, Kang-Ho;Yang, Woo-Seok;Kim, Jong-Dae;Kim, Dae-Sung;Kim, Ki-Hyun;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.187-192
    • /
    • 2010
  • In this paper, intrusion detection technique based on the sound field variation of audio frequency in the security space is proposed. The sound field formed by sound source can be detected with the microphone when the obstacle or intruder is positioned. The sound field variation due to the intruder is based on the interference of audio wave. With the help of numerical simulation of sound field formations, the increase or decrease of sound pressure level is analyzed not only the obstacle, but also the intruder. Even the microphone is positioned behind the source, sound pressure level can be increase or decrease due to the interference. Frequency response test is performed with Gaussian white noise signal to get the whole frequency response from 0 to half of sampling frequency. There are three security cases. Case 1 is the situation of empty space with and without intruder, case 2 is the situation of blocking obstacle with and without intruder, and case 3 is the situation of side blocking obstacle with and without intruder. At each case, the frequency response is obtained first at the security space without intruder, and second with intruder. From the experiment, intruder size of $50cm{\times}50cm$ can be successfully detected with the proposed technique. Moreover, the case 2 or case 3 bring about bigger sound field variation. It means that the proposed technique have the potential of more credible security sensing in real situation.

  • PDF

Intrusion Detection Based on the Sound Field Variation of Audible Frequency Band (가청 주파수대 음장 변화 측정 기반 침입 감지 기술)

  • Lee, Sung-Q;Park, Kang-Ho;Yang, Woo-Seok;Kim, Jong-Dae;Kim, Dae-Sung;Kim, Ki-Hyun;Wang, Se-Myung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.212-219
    • /
    • 2011
  • In this paper, intrusion detection technique based on the sound field variation of audio frequency in the security space is proposed. The sound field formed by sound source can be detected with the microphone when the obstacle or intruder is positioned. The sound field variation due to the intruder is mainly caused by the interference of audio wave. With the help of numerical simulation of sound field formations, the increase or decrease of sound pressure level is analyzed not only by the obstacle, but also by the intruder. Even the microphone is positioned behind the source, sound pressure level can be increased or decreased due to the interference of sound wave. Frequency response test is performed with Gaussian white noise signal to get the whole frequency response from 0 to half of sampling frequency. There are three security cases. Case 1 is the situation of empty space with and without intruder, case 2 is the situation of blocking obstacle with and without intruder, and case 3 is the situation of side blocking obstacle with and without intruder. At each case, the frequency response is obtained first at the security space without intruder, and second with intruder. From the experiment, intruder size of diameter of 50 cm pillar can be successfully detected with the proposed technique. Moreover, the case 2 and case 3 bring about bigger sound field variation. It means that the proposed technique have the potential of more credible security guarantee in real situation.