• Title/Summary/Keyword: Pressure Gain Combustion(PGC)

Search Result 5, Processing Time 0.019 seconds

Research Activities on PGC Propulsion Systems based on PDE (PDE 기반 PGC 추진기관 시스템 연구 동향)

  • Kim, Ji-Hoon;Kim, Tae-Young;Jin, Wan-Sung;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.858-869
    • /
    • 2014
  • Most of the aerospace propulsion is based on the Brayton cycle, in which the combustion is held through the constant pressure process, but further improvement of performance by increasing compression ratio is challenged by mechanical limits. Detonation propulsions, regarded promising for high-speed propulsion for a lase decade, is more rigorously studied in these days as a game-changer for the improvement of thermodynamic efficiency of propulsion and power generation systems. Since, the additional compression by the strong shock of the detonation wave is considered increasing thermodynamics efficiency that is hardly achievable by the conventional compression systems. Present paper will give an introduction the latest technical trends on the Pulse Detonation Engines(PDEs) and the activities on the Pressure Gain Combustion (PGC) based on Constant Volume Combustion (CVC).

Introduction to Pressure Gain Combustors for the Game-Changing SFC Improvement in Propulsion Systems (추진기관 혁신적 연비향상을 위한 승압연소기 개요 및 연구동향)

  • Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.301-302
    • /
    • 2012
  • During a last decade, detonative combustion is promising combustion mechanism of high-speed propulsion systems, but is more rigorously considered in these days as a game-changer for the improvement of thermodynamic efficiency of propulsion and power generation systems. Regardless of the skepticism about the pressure loss associated with the strong shock waves, it is shown that the additional compression by the strong shock wave exhibits increased thermodynamics efficiency that is not achievable by conventional compression systems. Present talk will give an introduction to the concepts and the recent activities on the pressure gain combustors (PGC) researches based on detonation phenomena.

  • PDF

Discussions on the Combustion Dynamics of RDE with Relevance to the Liquid Rocket Combustion Instability (RDE의 연소동역학 및 액체 로켓 연소 불안정과 연관성에 대한 고찰)

  • Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.363-366
    • /
    • 2012
  • Detonative combustion is considered as a promising combustion mechanism for improving thermodynamic efficiency of power generation systems as a PGC, as well as high-speed propulsion systems. Among the various types of detonative combustion, RDE is fascinated by many researchers because of the simplicity and continuos operation characteristics. Present paper is an introduction to the physical and operational concept of RDE with a brief history of RDE researches and recent development activities. Additional discussions will devoted to the relevance to the tangential mode instabilities in liquid rocket engines and improvement of liquid rocket performance.

  • PDF

Research Activities on PGC Propulsion based on RDE, Part I: Basic Studies (RDE 기반 PGC 추진기관 연구 동향, Part I: 기초연구)

  • Kim, Jung-Min;Niyasdeen, Mohammed;Han, Hyung-Seok;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.97-107
    • /
    • 2017
  • Fluid dynamic constant volume combustion technology detonation has been paid attention as a "game-changing" technology to overcome the efficiency and performance limitation of the present constant pressure combustion systems. For the past several years, a number of experimental and CFD-based theoretical studies have been conducted for the basic operation tests of RDE's. Present paper include a comprehensive survey on the research activities on RDE and its core technologies comprehensively to provide a direction for the future RDE researches, yet unfamiliar domestically.

Research Activities on PGC Propulsion Based on RDE, Part II: Application Studies (RDE 기반 PGC 추진기관 연구 동향, Part II: 응용연구)

  • Kim, Jung-Min;Niyasdeen, Mohammed;Han, Hyung-Seok;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.91-102
    • /
    • 2017
  • The early basic studies on RDE has been surveyed in the previous paper. Recently active researches are carrying on for the application to the power plant and aerospace propulsion systems. Collaboration researches are going on for the application of RDE for the gas turbine, liquid rocket and combined cycle engines in many countries. Following the previous Part 1 paper, present paper is intended to provide the comprehensive survey of recent worldwide efforts on the realistic application of RDE.