• Title/Summary/Keyword: Pressure Cell

Search Result 1,809, Processing Time 0.036 seconds

A Novel Air-cell Mattress Based on Approximate Anthropometric Model for Preventing Pressure Ulcer

  • Moon, In-Hyuk;Kang, Sung-Jae;Kim, Gyu-Seok;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1278-1282
    • /
    • 2005
  • Air mattress is now used widely to prevent the pressure ulcer by reducing the localized pressure peaks. In this paper an air-cell mattress and its pressure control method based on an approximate anthropometric model are presented. The air-cell mattress has eighteen cylindrical air cells made of porous material allowing air leakage to contribute in reducing the development of pressure ulcer by lowering the pressure peak, temperature and humidity. To determine an optimal air-cell pressure appropriate for each user, we divide the parts of the body into four sections such as head, trunk, hip, and leg. Then, the pressure of each section is independently calculated from the weight of each part based on the individual body height and weight and the approximate anthropometric model. Air supply system for the air-cell mattress is implemented by using four electronic solenoid valves and an air compressor, and it is driven by a real-time micro-controller. The experimental results with seven subjects shows that the proposed air-cell mattress is effective for the prevention of the pressure ulcer.

  • PDF

Development of Air-cell Mattress for Preventing Pressure Ulcer Using Anthropometric Model (인체계측 모델을 이용한 욕창방지용 공기셀 매트리스의 개발)

  • Kang Sung-Jae;Kim Gyu-Seok;Hong Jung-Hwa;Ryu Je-Cheong;Kim Kyung-Hoon;Mun Mu-Seong;Moon Inhyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.578-586
    • /
    • 2005
  • Air mattress is now used widely to prevent the pressure ulcer by reducing the localized pressure peaks. The pressure control method based on the anthrophometric model of an air-cell mattress developed in this study is presented. The air-cell mattress has 18 cylindrical air cells made of porous material allowing air leakage. Even though the air leakage can contribute to reducing the development of pressure ulcer by lowering the pressure peak, temperature and humidity, the air pressure changes with time and the desired air-cell pressure has to be determined as an optimal value for each user. To select the desired air-cell pressure, we first divide the parts of the body into four sections such as head, trunk, hip, and leg. Then, the pressure of each section grouped with air-cells is calculated from the weight of each part estimated from the individual height and body weight. Air supply system for the air-cell mattress is implemented by using four electronic solenoid valves and an air compressor, and it is driven by a real-time microcontroller. We experimented with five subjects of the contact pressure on skin. The experimental results show that the proposed air-cell mattress is effective for the prevention of the pressure ulcer.

Effects of Key Operating Parameters on the Efficiency of Two Types of PEM Fuel Cell Systems (High-Pressure and Low-Pressure Operating) for Automotive Applications

  • Kim Han-Sang;Lee Dong-Hun;Min Kyoungdoug;Kim Minsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1018-1026
    • /
    • 2005
  • The proton exchange membrane (PEM) fuel cell system consisting of stack and balance of plant (BOP) was modeled in a MATLAB/Simulink environment. High-pressure operating (compressor type) and low-pressure operating (air blower type) fuel cell systems were con­sidered. The effects of two main operating parameters (humidity and the pressure of the supplied gas) on the power distribution characteristics of BOP and the net system efficiency of the two systems mentioned above were compared and discussed. The simulation determines an optimum condition regarding parameters such as the cathode air pressure and the relative humidity for maximum net system efficiency for the operating fuel cell systems. This study contributes to get a basic insight into the fuel cell stack and BOP component sizing. Further research using muli­object variable optimization packages and the approach developed by this study can effectively contribute to an operating strategy for the practical use of fuel cell systems for vehicles.

Cell morphology of microcellular foaming injection molding products with pressure drop rate (초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화)

  • 김학빈;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

Analysis of Body Pressure Distribution Characteristics According to the Design Factors of the Air-Cell Mattress for Preventing Decubitus Ulcer (욕창방지방석용 공기셀의 설계요소에 따른 체압 분포 특성 분석)

  • Cho, Hyeon-Seok;Ryu, Jei-Cheong;Kim, Gyoo-Suk;Mun, Mu-Sung;Lee, In-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.118-126
    • /
    • 2007
  • A finite element simulation model was developed for the performance optimization of a closed type air-cell mattress used for the ulcer prevention. An H-model with material properties of human flesh and kinematic joints were used for the calculation of the body contact pressure. The material property of rubber air-cell was evaluated by tensile test of standard specimen. We evaluated the body contact pressure distribution after laying human model on the inflated air-cell mattress. It was found that the body contact pressure was dependent on cell height. but hardly affected by the thickness of the rubber in a cell.

Measurement of effective thermal conductivity and permeability on aluminum foam metal (알루미늄 발포금속의 유효열전도도와 침투율의 측정)

  • 백진욱;강병하;김서영;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • Effective thermal conductivities and pressure-drop-related properties of aluminum foam metals have been measured. The effects of porosity and cell size in the aluminum foam metal are investigated in detail. The porosity of the foam metal, considered in the present study, varies from 0.89 to 0.96 and the cell size from 0.65㎜ to 2.5㎜. The effective thermal conductivity is evaluated by comparing the temperature gradient of the foam metal with that of the thermal conductivity-known material. The pressure drop in the foam metal is measured by a highly precise electric manometer while air is flowing through the aluminum foam metal in the channel. The results obtained indicate that the effective thermal conductivities are found to be increased with a decrease in the porosity while the effective thermal conductivities ire little affected by the cell size at a fixed porosity. However, the pressure drop is strongly affected by the cell size as well as the porosity. It is seen that the pressure drop is increased as the cell size becomes smaller, as expected. The minimum pressure drop is obtained in the porosity 0.94 at a fixed cell size. A new correlation of the pressure drop is proposed based on the permeability and Ergun's coefficient for the aluminum foam metal.

  • PDF

Finite Element Analysis of Fuel Cell Stack with Orthotropic Material Model (직교이방성 연료전지 스택의 유한요소 해석)

  • 전지훈;황운봉;조규택;김수환;임태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.175-178
    • /
    • 2003
  • Mechanical behavior of a fuel stack was studied by the orthotropic material model. The fuel stack is mainly composed of bipolar plate (BP), gasket, end plate, membrane electrolyte assembly (MEA), and gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is very important to maintain a suitable contact pressure of BP, because it affects the efficiency of the fuel cell. This study compared mechanical behavior of various fastening types of the fuel cell stack. Bar, band, and modified band fastening type are used. The band fastening type showed that it reduces total volume of the cell, but it does not improve the contact pressure distribution of each BP. The modified band fastening type was designed by considering the deformations of band fastening type, and it showed a good enhancement of contact pressure distribution.

  • PDF

OPTIMUM AIR PRESSURE FOR AN AIR-CELL SEAT TO ENHANCE RIDE COMFORT

  • YOO W. S.;PARK D. W.;KIM M. S.;HONG K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.251-257
    • /
    • 2005
  • Several air cells are installed in the seat cushion to adjust the stiffness of seat by changing the air pressure. To select proper air pressure in the air cells, two kinds of tests are performed. For the pressure distribution on the seat, the maximum pressure and mean pressure are compared. And for the dynamic ride values, SEAT (Seat Effective Amplitude Transmissibility) values are calculated and compared. These experiments are carried out with three different drivers, three different vehicle speeds on the highway and two different speed on the primary road, and three different air pressures. From the real car tests, optimum air cell pressure depending on the vehicle speed and driver's weight are recommended.

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.

A Study on the Characteristic of Contact Pressure for CPB (Cold Pad Batch) Padder Roll Controlled by Hydraulic Single Cell (단일 유압 Cell로 제어되는 CPB(Cold Pad Batch)용 패더롤의 접촉압력 특성 연구)

  • Cho, Kyung-Chul;Lee, Eun-Ha;Jo, Soon-Ok;Park, Si-Woo;Hwang, Youn-Sung;Kim, Soo-Youn
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.86-96
    • /
    • 2017
  • To make uniform pressure distributed over the contact surface was necessary to cold pad batch dyeing machine. In this study, to confirm characteristic of flexibility and the contact pressure distribution through experimental analysis of padder roll were controlled by hydraulic cell. When there were no load pressure only inner pressure, the value of displacement in the center of padder were greater than the end of the padder. The results of this study showed that the padder had the optimum value of inner pressure for uniform contact pressure distribution. Measuring the contact pressure in a padder system were driven by using a pre-scale film. Uniform contact pressure distribution of cell padder were a linearly with load pressure and inner pressure. When the load pressure was less than 8 tons, the inner pressure for the uniform contact pressure was 1~4 bar. The padder roll performance curves proposed in this study were available for practical production environments and various roll designs.