• Title/Summary/Keyword: Press-over

Search Result 1,335, Processing Time 0.019 seconds

A new control approach for seismic control of buildings equipped with active mass damper: Optimal fractional-order brain emotional learning-based intelligent controller

  • Abbas-Ali Zamani;Sadegh Etedali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.305-315
    • /
    • 2023
  • The idea of the combination of the fractional-order operators with the brain emotional learning-based intelligent controller (BELBIC) is developed for implementation in seismic-excited structures equipped with active mass damper (AMD). For this purpose, a new design framework of the mentioned combination namely fractional-order BEBIC (FOBELBIC) is proposed based on a modified-teaching-learning-based optimization (MTLBO) algorithm. The seismic performance of the proposed controller is then evaluated for a 15-story building equipped with AMD subjected to two far-field and two near-field earthquakes. An optimal BELBIC based on the MTLBO algorithm is also introduced for comparison purposes. In comparison with the structure equipped with a passive tuned mass damper (TMD), an average reduction of 44.7% and 42.8% are obtained in terms of the maximum absolute and RMS top floor displacement for FOBELBIC, while these reductions are obtained as 30.4% and 30.1% for the optimal BELBIC, respectively. Similarly, the optimal FOBELBIC results in an average reduction of 42.6% and 39.4% in terms of the maximum absolute and RMS top floor acceleration, while these reductions are given as 37.9% and 30.5%, for the optimal BELBIC, respectively. Consequently, the superiority of the FOBELBIC over the BELBIC is concluded in the reduction of maximum and RMS seismic responses.

Assessment of steel structures designed for progressive collapse under localized fires

  • Behrouz Behnam
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.279-292
    • /
    • 2023
  • Structural design against the progressive collapse has been a vital necessity for decades due to occasional tragic events. The question of whether designed structures against the progressive collapse are still robust if subjected to multi-hazard scenarios containing column removal and successive localized fires is ad-dressed in the current study. Two seven-story steel structures with an identical area but different structural configurations of 4- and 5-bays are designed against the progressive collapse; the structural components are also fireproofed for a 60 min fire resistance. The structures are then subjected to different column re-moval scenarios over different stories followed immediately by localized fires. Results indicate that the structures are not able to keep their stability under all of the considered scenarios; the 4-bay structure is more vulnerable than the 5-bay structure. It is also indicated that upper stories are more sensitive toward the considered scenarios than lower stories. To advance structural safety, two strategies are adopted: in-creasing the thickness of the insulation materials to reduce the thermal effects, or, increasing the safety fac-tor (ΩN) of the structures when designing against the progressive collapse. As for the first strategy, provid-ing a 35% and a 25% increase in the insulation thicknesses of the structural components of the 4-bay and 5-bay structures, respectively, can prevent a progressive collapse to trigger. As for the second strategy, in-creasing ΩN by 10% can enhance the structural integrity to where no collapse occurs under all of the sce-narios.

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

Study on safety early-warning model of bridge underwater pile foundations

  • Xue-feng Zhang;Chun-xia Song
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The health condition of of deep water high pile foundation is vital to the safe operation of bridges. However, pier foundations are vulnerable to damage in deep water due to exposure to sea torrents and corrosive environments over an extended period. In this paper, combined with aninvestigation and analysis of the typical damage characteristics of main pier group pile foundations, we study the safety monitoring and real-time early warning technology of the deep water high pile foundations, we propose an early warning index item and early warning threshold of deep water high pile foundation by utilizing a numerical simulation analysis and referring to domestic and foreign standards and literature. First, we combine the characteristics of structures and draw on more mature evaluation theories and experience in civil engineering-related fields such as dam and bridge engineering. Then, we establish a scheme consisting of a Early Warning Index Systemand evaluation model based on the analytic hierarchy process and constant weight evaluation method and apply the research results to a project based on the Jiashao bridge in Zhejiang province, China. Finally, we verify the rationality and reliability of the Early Warning Index Systemof the Deep Water High Pile Foundations.

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee;Siddharth Pathaka
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.197-208
    • /
    • 2023
  • Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.

Development of stability evaluation system for retaining walls: Differential evolution algorithm-artificial neural network

  • Dong-Gun Lee;Sang-Yun Lee;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.329-339
    • /
    • 2023
  • The objective of this study is to develop a Stability Evaluation System for retaining walls to assess their safety in real-time during excavation. A ground investigation is typically conducted before construction to gather information about the soil properties and predict wall stability. However, these properties may not accurately reflect the actual ground being excavated. To address this issue, the study employed a differential evolution algorithm to estimate the soil parameters of the actual ground. The estimated results were then used as input for an artificial neural network to evaluate the stability of the retaining walls. The study achieved an average accuracy of over 90% in predicting differential settlement, wall displacement, anchor force, and structural stability of the retaining walls. If implemented at actual excavation sites, this approach would enable real-time prediction of wall stability and facilitate effective safety management. Overall, the developed Stability Evaluation System offers a promising solution for ensuring the stability of retaining walls during construction. By incorporating real-time soil parameter analysis, it enhances the accuracy of stability predictions and contributes to proactive safety management in excavation projects.

Aerostatic pressure of streamlined box girder based on conformal mapping method and its application

  • Wu, Lianhuo;Ju, J. Woody;Zhang, Mingjin;Li, Yongle;Qin, Jingxi
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.243-253
    • /
    • 2022
  • The conformal mapping method (CMM) has been broadly exploited in the study of fluid flows over airfoils and other research areas, yet it's hard to find relevant research in bridge engineering. This paper explores the feasibility of CMM in streamlined box girder bridges. Firstly, the mapping function transforming a unit circle to the streamlined box girder was solved by CMM. Subsequently, the potential flow solution of aerostatic pressure on the streamlined box girder was obtained and was compared with numerical simulation results. Finally, the aerostatic pressure attained by CMM was utilized to estimate the aerostatic coefficient and flutter performance of the streamlined box girder. The results indicate that the solution of the aerostatic pressure by CMM on the windward side is satisfactory within a small angle of attack. Considering the windward aerostatic pressure and coefficient of correction, CMM can be employed to estimate the rate of change of the lift and moment coefficients with angle of attack and the influence of the geometric shape of the streamlined box girder on flutter performance.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.