• Title/Summary/Keyword: Press-over

Search Result 1,335, Processing Time 0.018 seconds

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

Accuracy assessment of real-time hybrid testing for seismic control of an offshore wind turbine supporting structure with a TMD

  • Ging-Long Lin;Lyan-Ywan Lu;Kai-Ting Lei;Shih-Wei Yeh;Kuang-Yen Liu
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.601-619
    • /
    • 2023
  • In this study, the accuracy of a real-time hybrid test (RTHT) employed for a performance test of a tuned mass damper (TMD) on an offshore wind turbine (OWT) with a complicated jacket-type supporting structure is quantified and evaluated by comparing the RTHT results with the experimental data obtained from a shaking table test (STT), in which a 1/25-scale model for a typical 5-MW OWT controlled by a TMD was tested. In the RTHT, the jacket-type OWT structure was modelled using both multiple-DOF (MDOF) and single-DOF (SDOF) numerical models. When compared with the STT test data, the test results of the RTHT show that while the SDOF model, which requires less control computational time, is able to well predict the peak responses of the nacelle and TMD only, the MDOF model is able to effectively predict both the peak and over-all time-history responses at multiple critical locations of an OWT structure. This also indicates that, depending on the type of structural responses considered, an RTHT with either an SDOF or a MDOF model may be a promising alternative to the STT to assess the effectiveness of a TMD for seismic mitigation in an OWT context.

Engineering characterization of intermediate geomaterials - A review

  • T. Ashok Kumar;Ramanandan Saseendran;V. Sundaravel
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.453-462
    • /
    • 2023
  • Intermediate Geomaterials (IGMs) are natural formation materials that exhibit the engineering behavior (strength and compressibility) between soils and rocks. The engineering behavior of such material is highly unpredictable as the IGMs are stiffer than soils and weaker/softer than rocks. Further, the characterization of such material needs exposure to both soil and rock mechanics. In most conventional designs of geotechnical structures, the engineering properties of the IGMs are either aligned with soils or rocks, and this assumption may end up either in an over-conservative design or under-conservative design. Hence, many researchers have attempted to evaluate its actual engineering properties through laboratory tests. However, the test results are partially reliable due to the poor core recovery of IGMs and the possible sample disturbance. Subsequently, in-situ tests have been used in recent years to evaluate the engineering properties of IGMs. However, the respective in-situ test finds its limitations while exploring IGMs with different geological formations at deeper depths with the constraints of sampling. Standard Penetration Test (SPT) is the strength-based index test that is often used to explore IGMs. Moreover, it was also observed that the coefficient of variation of the design parameters (which represents the uncertainties in the design parameters) of IGMs is relatively high, and also the studies on the probabilistic characterization of IGMs are limited compared with soils and rocks. With this perspective, the present article reviews the laboratory and in-situ tests used to characterize the IGMs and explores the shear strength variation based on their geological origin.

[Retracted]Structural behavior of RC channel slabs strengthened with ferrocement

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.793-815
    • /
    • 2023
  • The current study looks at the experimental and numerical performance of ferrocement RC channel slabs reinforced with welded steel mesh, expanded steel mesh, and fiber glass mesh individually. Ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were subjected to flexural loadings as part of the testing program. The type of reinforcing materials, the number of mesh layers, and the reinforcement volume fraction are the key parameters that can be changed. The main goal is to determine the impact of using new inventive materials to reinforce composite RC channel slabs. Using ANSYS -16.0 Software, nonlinear finite element analysis (NLFEA) was used to simulate the behavior of composite channel slabs. Parametric study is also demonstrated to identify variables that can have a significant impact on the model's mechanical behavior, such as changes in slab dimensions. The obtained experimental and numerical results indicated that FE simulations had acceptable accuracy in estimating experimental values. Also, it's significant to demonstrate that specimens reinforced with fiber glass meshes gained approximately 12% less strength than specimens reinforced with expanded or welded steel meshes. In addition, Welded steel meshes provide 24% increase in strength over expanded steel meshes when reinforcing RC channel slabs. In general, ferrocement specimens tested under flexural loadings outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorbing capacity.

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

Mitigation of seismic pounding between two L-shape in plan high-rise buildings considering SSI effect

  • Ahmed Abdelraheem Farghaly;Denise-Penelope N. Kontoni
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.277-295
    • /
    • 2023
  • Unsymmetrical high-rise buildings (HRBs) subjected to earthquake represent a difficult challenge to structural engineering, especially taking into consideration the effect of soil-structure interaction (SSI). L-shape in plan HRBs suffer from big straining actions when are subjected to an earthquake (in x- or y-direction, or both x- and y- directions). Additionally, the disastrous effect of seismic pounding may appear between two adjacent unsymmetrical HRBs. For two unsymmetrical L-shape in plan HRBs subjected to earthquake in three different direction cases (x, y, or both), including the SSI effect, different methods are investigated to mitigate the seismic pounding and thus protect these types of structures under the earthquake effect. The most effective technique to mitigate the seismic pounding and help in seismically protecting these adjacent HRBs is found herein to be the use of a combination of pounding tuned mass dampers (PTMDs) all over the height (at the connection points) together with tuned mass dampers (TMDs) on the top of both buildings.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

Influence of trailing edge serration in the wake characteristics of S809 airfoil

  • Mano Sekar;Amjad Ali Pasha;Nadaraja Pillai Subramania
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The wake behavior of extended flat plate and serration in the trailing edge of S809 airfoil is presented in this experimental study using wind tunnel testing. The clustering of wind turbines in wind parks has recently been a pressing issue, due to the expected increase in power output and deciding the number of wind turbines to be installed. One of the prominent factors which influence the performance of the subsequent wind turbines is the downstream wake characteristics. A series of wind tunnel investigations were performed to assess the downstream near wake characteristics of the S809 airfoil at various angles of attack corresponding to the Reynolds Number Re = 2.02 × 105. These experimental results revealed the complex nature of the downstream near wake characteristics featuring substantial asymmetry arising out of the incoherent flow separations prevailing over the suction and the pressure sides of the airfoil. Based on the experimental results, it is found that the wake width and the downstream velocity ratio decrease with an increase in the angle of attack. Nonetheless, the dissipation length and downstream velocity ratio increases proportionally in the downstream direction. Additionally, attempts were made to understand the physical nature of the near wake characteristics at 1C, 2C, 3C and 4C downstream locations.

Flutter stability of a long-span suspension bridge during erection under skew wind

  • Xin-Jun Zhang;Fu-Bing Ying;Chen-Yang Zhao;Xuan-Rui Pan
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.39-56
    • /
    • 2023
  • To ensure the wind stability of a long-span suspension bridge during deck erection under skew wind, based on the aerostatic and self-excited aerodynamic force models under skew wind, a computational approach of refined flutter analysis for long-span bridges under skew wind is firstly established, in which the effects of structural nonlinearity, the static wind action and full-mode coupling etc are fully considered, and the corresponding computational procedure is programmed. By taking the Runyang suspension bridge over the Yangtze River as example, the flutter stability of the bridge in completion under skew wind is then analyzed with the aerodynamic parameters of a similar bridge deck measured from the sectional model wind tunnel test under skew wind. Finally, through simulating the girder segments erected symmetrically from the midspan to towers, from the towers to midspan and simultaneously from the towers and midspan to the quarter points, respectively, the evolutions of flutter stability limits during the deck erection under skew wind are investigated numerically, the favorable aerodynamically deck erection sequence is proposed, and the influences of skew wind and static wind effect on the flutter stability of suspension bridge under construction are ascertained.