• Title/Summary/Keyword: Press-over

Search Result 1,310, Processing Time 0.026 seconds

Performance of aerated lightweighted concrete using aluminum lathe and pumice under elevated temperature

  • Mohammad Alharthai;Yasin Onuralp Ozkilic;Memduh Karalar;Md Azree Othuman Mydin;Nebi Ozdoner;Ali Ihsan Celik
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.271-288
    • /
    • 2024
  • The primary objective of this study is to investigate the production and performance characteristics of structural concrete incorporating varying proportions (0%, 25%, and 50% by volume) of pumice stone, as well as aluminum lathe as an additive at 0%, 1%, 2%, and 3%, under fire conditions. The experiment will be conducted over a period of up to 1 hour, at temperatures ranging from 24℃, 200℃, 400℃ and 600℃. For the purpose of this, a total of twelve test samples were manufactured, and then tests of compressive strength (CS), splitting tensile strength (STS), and flexural strength (FS) were performed on these samples.Next, a comparison was made between the obtained values and the influence of temperature. To achieve this objective, the manufactured samples were placed at temperatures of 200℃, 400℃, and 600℃ for a duration of 1 hour, and were subjected to the influence of temperature.These values at 24 ℃ were then contrasted with the CS results obtained from test samples that were subjected to the temperature effect for an hour at 200 ℃, 400 ℃, and 600 ℃. A comprehensive analysis of the test outcomes reveals that the incorporation of aluminum lathe wastes into a mixture results in a significant reduction in the compressive strength of the concrete. As a result of this adjustment, the CS values dropped by 32.93%, 45.70%, and 52.07%, respectively. Furthermore, It was shown that testing the ratios of pumice stone alone resulted in a decrease in CS outcomes. Additionally, it was found that the presence of higher temperatures is clearly the primary factor contributing to the decrease in the strength of concrete. Due to elevated temperatures, the CS values decreased by 19.88%, 28.27%, and 38.61% respectively.After this investigation, an equation that explains the connection between CS and STS was provided through the utilization of the data of the experiments that were carried out.

Combination resonances of porous FG shallow shells reinforced with oblique stiffeners subjected to a two-term excitation

  • Kamran Foroutan;Liming Dai;Haixing Zhao
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • The present research investigates the combination resonance behaviors of porous FG shallow shells reinforced with oblique stiffeners and subjected to a two-term excitation. The oblique stiffeners considered in this research reinforce the shell internally and externally. To model the stiffeners, Lekhnitskii's smeared stiffeners technique is utilized. According to the first-order shear deformation theory (FSDT) and stress functions, a nonlinear model of the oblique stiffened shallow shell is established. With regard to the FSDT and von-Kármán nonlinear geometric assumptions, the stress-strain relationships for the present shell system are developed. Also, in order to discretize the nonlinear governing equations, the Galerkin method is implemented. To obtain the required relations for investigating the combination resonance theoretically, the method of multiple scales is applied. For verifying the results of the present research, generated results are compared with previous research. Additionally, a comparison with the P-T method is conducted to increase the validity of the generated results, as this method has illustrated advantages over other numerical methods in terms of accuracy and reliability. In this method, the piecewise constant argument is used jointly with the Taylor series expansion, which is why it is named the P-T method. The effects of stiffeners with different angles, and the effects of material parameters on the combination resonance behaviors of the present system are addressed. With the findings of this research, researchers and engineers in this field may use them as benchmarks for their design and research of porous FG shallow shells.

Behavior of self-compacting recycled concrete filled aluminum tubular columns under concentric compressive load

  • Yasin Onuralp Ozkilic;Emrah Madenci;Walid Mansour;I.A. Sharaky;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.243-260
    • /
    • 2024
  • Thirteen self-compacting recycled concrete filled aluminium tubular (SCRCFAT) columns were tested under concentric compression loads. The effects of the replacement ratio of the recycled concrete aggregate (RCA) and steel fibre (SF) reinforcement on the structural performance of the SCRCFAT columns were studied. A control specimen (C000) was cast with normal concrete without SF to be reference for comparison. Twelve columns were cast using RCA, six columns were cast using concrete incorporating 2% SF while the rest of columns were cast without SF. Failure mode, ductility, ultimate load capacity, axial deformation, ultimate strains, stress-strain response, and stiffness of the SCRCFAT columns were studied. The results showed that, the peak load of tested SCRCFAT columns incorporating 5-100 % RCA without SF reduced by 2.33-11.28 % compared to that of C000. Conversely, the peak load of tested SCRCFAT columns incorporating 5-100% RCA in addition to 2% SF increased by 21.1-40.25%, compared to C000. Consequently, the ultimate axial deformation (Δ) of column C100 (RCA=100% and SF 0%) increased by about 118.9 % compared to C000. The addition of 2% SF to the concrete mix decreased the axial deformation of SCRCFAT columns compared to those cast with 0% SF. Moreover, the stiffness of the columns cast without SF decreased as the RCA % increased. In contrast, the columns stiffness cast with 2% SF increased by 26.28-89.7 % over that of C000. Finally, a theoretical model was proposed to predict the ultimate loads tested SCRCFAT columns and the obtained theoretical results agreed well with the experimental results.

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu;Yutong Jiang;Xizhan Ning;Zhipeng Liu
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

An Analysis of News Media Coverage of the QRcode: Based on 2008-2023 News Big Data (QR코드에 대한 언론 보도 경향: 2008-2023년 뉴스 빅데이터 분석)

  • Sunjeong Kim;Jisu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.2
    • /
    • pp.269-294
    • /
    • 2024
  • This study analyzed the news media coverage of QRcodes in Korea over a 16-year period (2008 to 2023). A total of 13,335 articles were extracted from the Korea Press Foundation's BigKinds. A quantitative and content analysis was conducted on the news frames. The results indicated that the quantity of news coverage has increased. The greatest quantity of news coverage was observed in 2020, and the most frequently discussed topic in the news was 'IT_Science'. The results of the keyword analysis indicated that the primary words were 'QRcode', 'smartphone', 'service', 'application', and 'payment'. The news media primarily focused on the QRcode's ability to provide instant access and recognition technology. This study demonstrates that advanced information and communication technologies and the increased prevalence of mobile devices have led to a rise in the utilization of QRcodes. Furthermore, QRcodes have become a significant information media in contemporary society.

PARTIAL REPLACEMENT OF GRASS SILAGE WITH WHOLE-CROP CEREAL SILAGE FOR GROWING BEEF CATTLE

  • Raza, S.H.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.281-287
    • /
    • 1995
  • A study was conducted to investigate the effect of different inclusion levels of urea treated whole-crop wheat silage (UWCWS) in grass silage based rations on the performance of growing beef cattle. The winter wheat (variety, Riband) was harvested (in the summer of 1991) at a dry matter proportion of 520 g/kg and treated with feed grade urea at the rate of 37 kg/tonne crop dry matter and preserved in a heavy duty plastic bag using a silo press. The urea treated whole crop wheat silage (UWCWS) was mixed with grass silage to replace 0.00 (S100), 0.33 (S33) and 0.67 (S67) parts of the forage dry matter and fed ad libitum in a cross over design to 18 Simmental X Holstein Friesian growing beef animals. Two energy sources {one high in starch, rolled barley (RB) and one high in digestible fibre, sugar beet pulp (SBP)} were fed to supply sufficient energy for the efficient use of nitrogen by the rumen micro-organisms. The data on DMIF (dry matter intake of forage), TDMI (total dry matter intake), DLWG (daily live weight gain), FCR (feed conversion ratio) were recorded and faecal samples were collected to determine the digestibility coefficients. Results revealed that with the inclusion of UWCW in the animals' diets the DMI of the forage was significantly increased (p < 0.05). The highest DMIF was found in the treatment "S33" ($6.28{\pm}0.25kg$) where 67% of the silage dry matter was replaced with the UWCW and the lowest value for DMIF was observed in the control treatment ($5.03{\pm}0.23kg$). The DLWG did not differ significantly between the treatments. However, treatment "S100" showed a trend towards a superior DLWG. Feed conversion ratio in the control treatment differed significantly from "S67" and "S33". The addition of the UWCW in the animals' diet resulted in the lower FCR There was no effect of type of energy supplement on any aspect of performance either overall or in interaction with grass silage: UWCWS ratio. The regression and correlation coefficients for DMIF (r = 5.22 + 0.0184x*), DLWG (r = $1.04-0.00086x^{NS}$) and FCR (r = 4.78 = 0.022x*) on the inclusion of UWCW in the diet were calculated. The effect of the inclusion of UWCW on the overall digestibility coefficients was significant (p < 0.05). The addition of the UWCWS in the diet decreased the digestibility of the DM, OM, ADF and NFE but effect on the protein digestibility was non significant. The results of present study suggests that a DLWG slightly over 1 kg can be achieved with UWCW during the store period (period in which animal performance targets are low especially during winter) and the prediction of ME was overestimated as the high intake of DM did not reflect in improved animal performance.