• Title/Summary/Keyword: Press bending

Search Result 1,674, Processing Time 0.021 seconds

An experimental study on creep deformation of thin-walled tubes under pure bending

  • Hsu, Chien-Min;Fan, Chun-Huei
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • The creep deformation of pure bending (hold constant moment for a period of time) tests were conducted in this paper. Thin-walled tubes of 304 stainless steel were used in this investigation. The curvature-ovalization measurement apparatus, designed by Pan et al. (1998), was used for conducting the present experiments. It has been found that as soon as the creep deformation is started, the magnitudes of the tube curvature and ovalization of tube cross-section quickly increase. The magnitudes of the creep curvature and ovalization of tube cross-section increase fast with a higher hold moment than that with a lower one. Owing to the continuously increasing curvature during the creep deformation, the tube specimen buckles eventually.

Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation

  • Daouadji, Tahar Hassaine;Adim, Belkacem;Benferhat, Rabia
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.35-53
    • /
    • 2016
  • Flexural bending analysis of perfect and imperfect functionally graded materials plates under hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used to approximate material properties of the FGM plates including the porosity volume fraction. In order the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation. The equilibrium equations are given and a number of examples are solved to illustrate bending response of Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The influences played by many parameters are investigated.

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.

A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates

  • Nguyen, Kien T.;Thai, Tai H.;Vo, Thuc P.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.91-120
    • /
    • 2015
  • A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates is presented in this paper. It contains only four unknowns, accounts for a hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion are derived from Hamilton's principle. The Navier-type and finite element solutions are derived for plate with simply-supported and various boundary conditions, respectively. Numerical examples are presented for functionally graded sandwich plates with homogeneous hardcore and softcore to verify the validity of the developed theory. It is observed that the present theory with four unknowns predicts the response accurately and efficiently.

On bending characteristics of smart magneto-electro-piezoelectric nanobeams system

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Selvamani, Rajendran;Toghroli, Ali
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.183-191
    • /
    • 2020
  • The content of this study focuses on bending of flexoelectric Magneto-Electro-Elastic (MEE) nanobeams inserted within the foundation of Winkler-Pasternak according to nonlocal elasticity theory. Applying Hamilton's principle, the nonlocal nanobeams' governing equations in the framework higher order refined beam theory are attained and resolved through adapting an analytical solution. A parametric research is demonstrated for studying the effects that magneto-electro-mechanical loadings, the nonlocal parameter, flexoelectric, as well as the aspect ratio all have on the deflection properties of nanobeams. A discovery lead to beam geometrical parameters, the boundary conditions, flexoelectricity and nonlocal parameter partake substantial effects on nanoscale beams' dimensionless deflection.

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading

  • Chavan, Shivaji G.;Lal, Achchhe
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.229-246
    • /
    • 2017
  • The dynamic bending response of single walled carbon nanotube reinforced composite (SWCNTRC) plates subjected to hygro-thermo-mechanical loading are investigated in this paper. The mechanical load is considered as wind pressure for dynamic bending responses of SWCNTRC plate. The dynamic version of the High Order shear deformation Theory (HSDT) for a composite plate with Matrix and SWCNTRC plate is first formulated. Distribution of fibers through the thickness of the SWCNTRC plate could be uniform or functionally graded (FG). The dynamic displacement response is predicted by using Nemarck integration method. The effective material properties of SWCNTRC are estimated by using micromechanics based modeling approach. The effect of different environmental condition, volume fraction of SWCNT, Width-to-thickness ratio, wind pressure, different SWCNTRC-FG plates, boundary condition, E1/E2 ratio, different temperature on dynamic displacement response is investigated. The dynamic displacement response is compared with the available literature and it shows good agreement.

Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities

  • Bensaid, Ismail;Guenanou, Ahmed
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.45-63
    • /
    • 2017
  • In this article, static deflection and buckling of functionally graded (FG) nanoscale beams made of porous material are carried out based on the nonlocal Timoshenko beam model which captures the small scale influences. The exact position of neutral axis is fixed, to eliminate the stretching and bending coupling due to the unsymmetrical material change along the FG nanobeams thickness. The material properties of FG beam are graded through the thickness on the basis of the power-law form, which is modified to approximate the material properties with two models of porosity phases. By employing Hamilton's principle, the nonlocal governing equations of FG nanobeams are obtained and solved analytically for simply-supported boundary conditions via the Navier-type procedure. Numerical results for deflection and buckling of FG nanoscale beams are presented and validated with those existing in the literature. The influences of small scale parameter, power law index, porosity distribution and slenderness ratio on the static and stability responses of the FG nanobeams are all explored.

Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • This paper investigated bending of magneto-electro-elastic (MEE) nanobeams under hygro-thermal loading embedded in Winkler-Pasternak foundation based on nonlocal elasticity theory. The governing equations of nonlocal nanobeams in the framework parabolic third order beam theory are obtained using Hamilton's principle and solved implementing an analytical solution. A parametric study is presented to examine the effect of the nonlocal parameter, hygro-thermal-loadings, magneto-electro-mechanical loadings and aspect ratio on the deflection characteristics of nanobeams. It is found that boundary conditions, nonlocal parameter and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.

Analysis of stiffened plates composed by different materials by the boundary element method

  • Fernandes, Gabriela R.;Neto, Joao R.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.605-623
    • /
    • 2015
  • A formulation of the boundary element method (BEM) based on Kirchhoff's hypothesis to analyse stiffened plates composed by beams and slabs with different materials is proposed. The stiffened plate is modelled by a zoned plate, where different values of thickness, Poisson ration and Young's modulus can be defined for each sub-region. The proposed integral representations can be used to analyze the coupled stretching-bending problem, where the membrane effects are taken into account, or to analyze the bending and stretching problems separately. To solve the domain integrals of the integral representation of in-plane displacements, the beams and slabs domains are discretized into cells where the displacements have to be approximated. As the beams cells nodes are adopted coincident to the elements nodes, new independent values arise only in the slabs domain. Some numerical examples are presented and compared to a wellknown finite element code to show the accuracy of the proposed model.