• 제목/요약/키워드: Press Forming Process

검색결과 297건 처리시간 0.027초

Distribution and evolution of residual voids in longwall old goaf

  • Wang, Changxiang;Jiang, Ning;Shen, Baotang;Sun, Xizhen;Zhang, Buchu;Lu, Yao;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.105-114
    • /
    • 2019
  • In this paper, simulation tests were conducted with similar materials to study the distribution of residual voids in longwall goaf. Short-time step loading was used to simulate the obvious deformation period in the later stage of arch breeding. Long-time constant loading was used to simulate the rheological stage of the arch forming. The results show that the irregular caving zone is the key area of old goaf for the subsidence control. The evolution process of the stress arch and fracture arch in stope can be divided into two stages: arch breeding stage and arch forming stage. In the arch breeding stage, broken rocks are initially caved and accumulated in the goaf, followed by the step deformation. Arch forming stage is the rheological deformation period of broken rocks. In addition, under the certain loads, the broken rock mass undergoes single sliding deformation and composite crushing deformation. The void of broken rock mass decreases gradually in short-time step loading stage. Under the water lubrication, a secondary sliding deformation occurs, leading to the acceleration of the broken rock mass deformation. Based on above research, the concept of equivalent height of residual voids was proposed, and whose calculation equations were developed. Finally, the conceptual model was verified by the field measurement data.

Cu/Ag 복합판재의 전기/기계적 성질 및 프레스 성형성에 관한 연구 (A study on electrical and mechanical properties and press formability of a Cu/Ag composite sheet)

  • 신제식
    • Design & Manufacturing
    • /
    • 제6권1호
    • /
    • pp.95-100
    • /
    • 2012
  • In this study, a novel Cu composite sheet with embedded high electric conduction path was developed as another alternative for the interconnect materials possessing high electrical conductivity as well as high strength. The Cu composite sheet was fabricated by forming Ag conduction paths not within the interior but on the surface of a high strength Cu substrate by damascene electroplating process. As a result, the electrical conductivity increased by 40% thanks to mesh type Ag conduction paths, while the ultimate tensile strength decreased by 20%. The interfacial fracture resistance of Cu composite sheet prepared by damascene electroplating increased by above 50 times compared to Cu composite sheet by conventional electroplating. For feasibility test for practical application, a leadframe for LED module was manufactured by a progressive blanking and piercing processes, and the blanked surface profile was evaluated as a function of the volume fraction of Ag conduction paths. As Ag conduction path became finer, pressing formability improved.

  • PDF

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

탄소 당량식을 이용한 고강도 보론강의 레이저 용접부 경도 예측 (Hardness Estimation of Laser Welded Boron Steel Welds with the Carbon Equivalent)

  • 전인환;김철희;김재도
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.1-5
    • /
    • 2016
  • The hardness of laser weldments has been predicted by using several carbon equivalent equations and estimation models. In this study, authors extended the model to boron steel sheets which are adopted for the hot press forming process. four kinds of boron steels with the strengths from 1500 MPa to 1900 MPa were considered and the hardness profiles of weldments was measured from the experiments of this study and the references. The traditional "Kaizu" equation could predict the hardness with an accuracy of -4.9% error although the Kaizu equation does not consider the boron content. Modified carbon equivalents were suggested by adding a term as like 5B or 14B into the Kaizu equation, and it could improve the accuracy of the prediction model.

A STUDY ON CENTER THINNING IN ROTARY FORGING OF CIRCULAR PLATE

  • Choi, Seo-Gou;Oh, Hung-Kuk
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.86-94
    • /
    • 1995
  • The rotary forging process has a potential for producing high-precision parts because of smaller forging forces and incrementally controlled deformation, especially in cold forging of intricate parts to net shape. But while thin circular plate are made by rotary forging, center thinning and fracture will occur under given conditions. The trouble has seriously influenced the quality of products and the spreading of this technique. This paper intends to explain the phenomenon of center thinning and gives a criterion of it. In order to confirm the validity of the proposed criterion, experiments have been carried out by using the rotary forging press which has been designed and constructed in our laboratory.

  • PDF

등온압축성형공법을 이용한 폴리머 렌즈 성형 (Isothermal Compression Molding for a Polymer Optical Lens)

  • 오병도;권현성;김순옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.996-999
    • /
    • 2008
  • Aspheric polymer lens fabrication using isothermal compression molding is presented in this paper. Due to increasing definition of an image sensor, higher precision is required by a lens which can be used as a part of an imageforming optical module. Injection molding is a factory standard method for a polymer optical lens. But achievable precision using injection molding has a formidable limitation due to the machining of complex mold structure and melting and cooling down a polymer melt under high pressure condition during forming process. To overcome the precision requirement and limitation using injection molding method, isothermal compression molding is applied to fabrication of a polymer optical lens. The fabrication condition is determined by numerical simulations of temperature distribution and given material properties. Under the found condition, the lens having a high precision can successfully be reproduced and does not show birefringence which results often in optical degradation.

  • PDF

Study on the response of circular thin plate under low velocity impact

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid
    • Geomechanics and Engineering
    • /
    • 제9권2호
    • /
    • pp.207-218
    • /
    • 2015
  • In this paper, forming of fully clamped circular plate by using low velocity impact system has been investigated. This system consists of liquid shock tube and gravity drop hammer. A series of test on mild steel and aluminum alloy plates has been done. The effect of varying both impact load and the plate material on the deflection are described. This paper also presents a simple model to prediction of mid-point deflection of circular plate by using input-output experimental data. In this way, singular value decomposition (SVD) method is used in conjunction with dimensionless number incorporated in such complex process. The results of obtained model have very good agreement with experimental data and it provides a way of studying and understanding the plastic deformation of impact loads.

Plane strain bending of a bimetallic sheet at large strains

  • Alexandrov, Sergei E.;Kien, Nguyen D.;Manh, Dinh V.;Grechnikov, Fedor V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.641-659
    • /
    • 2016
  • This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The general solution is cumbersome because different analytic expressions for the radial and circumferential stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process parameters the solution to the problem consists of a sequence of rather simple analytic expressions connected by transcendental equations. The general solution is illustrated by a simple example.

박판 궤도륜 볼베어링의 특성해석 및 피로수명 평가 (Analysis and Fatigue Life Evaluation of the Ball Bearing with Thin-Section Raceways)

  • 김완두
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.48-55
    • /
    • 1997
  • The ball bearing with thin-section raceways which is much lighter than other conventional bearings used in most modem passenger cars and small tracks. The important design parameters of this bearing is the groove radius of raceways, the diametral clearance, the free contact angle and so on. The optimal value of these parameters were determined by considering the dynamic load capacity, the contact angle and the calculated fatigue life. The contact angle between a ball and raceways was calculated by considering the local contact deformation and the structural deformation of thin-section raceways which was estimated by FEM. The raceways were made by means of the press-forming process. The fatigue life tester was designed and manufactured. The fatigue life test was executed and the reliability of this bearing was confirmed.

파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계 (Design of shearing process to reduce die roll in the curved shape part of fine blanking process)

  • 전용준
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.