• Title/Summary/Keyword: Press Forming Process

Search Result 300, Processing Time 0.029 seconds

A Study on the Improvement of Forming Processes of Valve-Spring Retainer (Valve-Spring Retainer의 성형공정개선에 관한 연구)

  • 오현석;황병복;이호용
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.145-155
    • /
    • 1996
  • The conventional five-stage forming processes of the valve-spring retainer are simulated using the rigid-plstiv finite element method. As a design criterion the improved process should satisfy the maximum forging load during processes within the loading limit of the available press and should not induce any geometrical defects. hollow bars are recommended as initial billets to skip the heading and piercing processes. Through various simulations it is found out that the one stage process results in less forging loads and better strain distributions.

  • PDF

Joining of Multi Nodes of a Titanium Bicycle by the Superplastic Hydroforming and Diffusion Bonding Technology (티타늄 자전거의 다중 조인트 접합을 위한 초소성 하이드로포밍과 확산 접합 기술)

  • Yoo, Y.H.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • The superplastic forming/diffusion bonding process has been developed to fabricate a core frame structure with joint nodes out of tubes, for the development of a titanium high performance bicycle. The hydroforming process has been applied for bulging of a tube in the superplastic condition before, and during the diffusion bonding process. In this experiment, a commercial Ti-3Al-2.5V tube was selected as raw material for the study. The forming experiment has been performed using a servo-hydraulic press with a capacity of 200 ton. Next, nitrogen gas was used to acquire necessary pressure for the bulging and bonding of the tubes to fabricate the joint nodes. The pertinent processing temperature was $870^{\circ}C$ for the superplastic hydroforming/diffusion bonding (SHF/DB) process, using the Ti-3Al-2.5V tube. The bonding quality and the progress of bulging and diffusion bonding have been observed by the investigation of the joining interfaces at the cross section of the joint structure. The control of the nitrogen pressure throughout the SHF/DB process, was an important factor to avoid any significant defects in the joint structure. The whole progress stage of the diffusion bonding could be observed at a joint interface. A core structure with 5 joint nodes to manufacture a titanium bicycle could be obtained in a SHF/DB process.

Development of High Precision Plate Holder in Automotive Seat Recliner by Mechanical Press(I) : Application of FCF Method (기계식 프레스에 의한 자동차 시트 리클라이너의 고정밀 플레이트 홀더 개발(I) : FCF 공법 적용)

  • Kim, Byung-Min;Choi, Hong-Seok;Chang, Myung-Jin;Bae, Jae-Ho;Lee, Seon-Bong;Ko, Dae-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.55-63
    • /
    • 2008
  • Fine blanking is a process of press shearing which makes it possible to produce the thick sheet metal of the finished surface and the close dimensional accuracy over the whole material thickness in the single blanking operation. In this paper, a plate holder of automotive seat recliner is manufactured by FCF(Flow Control Forming) method using the conventional mechanical press instead of the fine blanking press. Main processes for manufacturing of the plate holder by FCF method are embossing, half blanking and trimming processes. Optimal clearance, stripper force and counter force to increase the dimensional accuracy of the plate holder have been investigated by FE-analysis. As a result of FE-analysis, the clearance for both embossing and half blanking processes was -2%t and the forces of stripper and counter were 25ton and 15ton, respectively. After manufacturing the plate holder by FCF method, the measured dimensional characteristics have been compared with the required specifications as the final product. Although the dimensional accuracy of the plate holder manufactured by FCF method was a little inferior to that by fine blanking process, it was satisfactory in a general sense.

Combined Heat Treatment Characteristics of Cast Iron for Mold Materials (금형재료용 주철강의 복합열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.364-370
    • /
    • 2011
  • Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.

A Study on the Molding Process of Carbon Fiber Automotive Wheels by Taguchi method (다구찌법을 이용한 자동차용 카본 휠 성형공정에 관한 연구)

  • Ryu, Mi-Ra;Jeon, Hwan-Young;Park, Chul-Hyun;Bae, Hui-Eun;Bae, Hyo-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.30-37
    • /
    • 2017
  • Weight reduction of the wheel is exerts a great influence on the running performance of the vehicle, a lot of research for a lightweight aluminum wheels progress. In order to select the molding conditions through the experiment on the carbon fiber prepreg molding process based on the design of the mold for manufacturing the carbon wheel using the carbon fiber pressure forming method, the carbon wheel molding process using the Taguchi method And to produce prototypes based on the results.

A Study on the Mold Fabrication and Molding Technology with Three-dimensional Surface Textures for Smart Phone Case (3차원 질감표현 스마트폰 케이스 제작을 위한 금형 및 성형기술 개발)

  • Kim, Jong-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.15-18
    • /
    • 2011
  • Up to now the incomplete texture have been manufactured through the 2D surface treatment like simple painting process or printing process. But in order to obtain 3D texture like natural object, micro scales' 3D surface structure on the surface of plastic part must be formed. In this study plastic smart phone case with 3D texture was produced by developing the surface duplication technology of natural object used electro-forming technology, by developing the press forming technology converted plane stamper to curved surface stamper and by developing the injection mold and molding technology which have been installed the curved surface stamper.

Fabrication and Magnetic Process of 13Cr-1.5Nb-Fe Stainless Sensors (13Cr-1.5Nb-Fe 스텐레스 센서재료의 제조 및 연자기특성)

  • 윤성호;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.125-130
    • /
    • 1998
  • 13Cr-1.5Nb-Fe alloy powder was fabricated by water atomization method, and ring-shape specimen of this composition was fabricated by oil press, and then sintered in the vacuum furnace. Powder shape, size distribution, composition (C, N, O, S) analysis and saturation magnetization of as-prepared 13Cr-1.5Nb-Fe alloy powder were investigated. Ac permeability and power loss was measured after forming and sintering process. Saturation magnetization and contents of oxygen of the alloy powder is160 emu/g and about 6000 ppm, respectively. 50 % volume fraction indicate particle size of 70$\mu$m. The ac permeability of sintered specimen increases with increasing sintering temperature and forming pressure. The power loss is 107 W/cc at sintering temperature of 1200 $^{\circ}C$, 12 ton/$\textrm{cm}^2$ forming pressure, and 20 KHz. It is the lowest among the prepared specimen.

  • PDF

Effects of needle punching process and structural parameters on mechanical behavior of flax nonwovens preforms

  • Omrani, Fatma;Soulat, Damien;Ferreira, Manuela;Wang, Peng
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.157-168
    • /
    • 2019
  • The production of nonwoven fabrics from natural fibers is already expanding at an industrial level for simple curvature semi-structural part in the automotive industry. To develop their use for technical applications, this paper provides an experimental study of the mechanical behavior of flax-fiber nonwoven preforms. A comparison between different sets of carded needle-punched nonwoven has been used to study the influence of manufacturing parameters such as fibers' directions, the area and the needle punching densities. We have found that the anisotropy observed between both directions can be reduced depending on these parameters. Furthermore, this work investigates the possibility to form double curvature parts such as a hemisphere as well as a more complex shape such as a square box which possesses four triple curvature points. We propose a forming process adapted to the features of the nonwoven structure. The purpose is to determine their behavior under high stress during various forming settings. The preforming tests allowed us to observe in real time the manufacturing defects as well as the high deformability potential of flax nonwoven.

Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels (자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링)

  • Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.