• Title/Summary/Keyword: Preserving Information

Search Result 858, Processing Time 0.027 seconds

A New Parity Preserving Run-length Limited Code for Optical Recording System (광 기록 저장 장치를 위한 새로운 패리티 보존형 런-길이 제한 코드)

  • Hong, Hyun-Sun;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.59-64
    • /
    • 2004
  • We propose a new RLL(run length limited) (2,7) PP(parity preserving) code with 4 RMTR(repeated minimum transition run) for optical recording. The proposed code has better characteristics in terms of density ratio, RMTR, DC(direct current) component suppression, BER(bit error rate) and system complexity than (2,1O) code that currently applied in storage systems and (1,7) PP code that highly recommended as the next generation optical recording system. Some characteristics of the code are described with several simulations. And the proposed code's superiorites in performance is illustrated as compared with the other codes.

Weaknesses Cryptanalysis of Khan's Scheme and Improved Authentication Scheme preserving User Anonymity (Khan 인증기법의 취약점 분석과 개선된 사용자 익명성 제공 인증기법)

  • Park, Mi-Og
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • In this paper, we analyse the weaknesses of authentication scheme preserving user anonymity proposed by Khan et al in 2011 and we propose a new authentication schemes preserving user anonymity that improved these weaknesses. Khan et al's authentication scheme is vulnerable to insider attack and doesn't provide user anonymity to the server. Also, this scheme is still a weakness of wrong password input by mistake in spite of proposing the password change phase. In this paper, we will show that Khan et al's scheme is vulnerable to the stolen smart card attack and the strong server/user masquerade attack. The proposed authentication scheme propose the improved user anonymity, which can provide more secure privacy to user by improving these weaknesses.

A Privacy-preserving Data Aggregation Scheme with Efficient Batch Verification in Smart Grid

  • Zhang, Yueyu;Chen, Jie;Zhou, Hua;Dang, Lanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.617-636
    • /
    • 2021
  • This paper presents a privacy-preserving data aggregation scheme deals with the multidimensional data. It is essential that the multidimensional data is rarely mentioned in all researches on smart grid. We use the Paillier Cryptosystem and blinding factor technique to encrypt the multidimensional data as a whole and take advantage of the homomorphic property of the Paillier Cryptosystem to achieve data aggregation. Signature and efficient batch verification have also been applied into our scheme for data integrity and quick verification. And the efficient batch verification only requires 2 pairing operations. Our scheme also supports fault tolerance which means that even some smart meters don't work, our scheme can still work well. In addition, we give two extensions of our scheme. One is that our scheme can be used to compute a fixed user's time-of-use electricity bill. The other is that our scheme is able to effectively and quickly deal with the dynamic user situation. In security analysis, we prove the detailed unforgeability and security of batch verification, and briefly introduce other security features. Performance analysis shows that our scheme has lower computational complexity and communication overhead than existing schemes.

Efficient Privacy-Preserving Metering Aggregation in Smart Grids Using Homomorphic Encryption (동형 암호를 이용한 스마트그리드에서의 효율적 프라이버시 보존 전력량 집계 방법)

  • Koo, Dongyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.685-692
    • /
    • 2019
  • Smart grid enables efficient power management by allowing real-time awareness of electricity flows through two-way communication. Despite its various advantages, threats to user privacy caused by frequent meter reading hinder prosperous deployment of smart grid. In this paper, we propose a privacy-preserving aggregation method exploiting fully homomorphic encryption (FHE). Specifically, it achieves privacy-preserving fine-grained aggregation of electricity usage for smart grid customers in multiple electrical source environments, while further enhancing efficiency through SIMD-style operations simultaneously. Analysis of our scheme demonstrates the suitability in next-generation smart grid environment where the customers select and use a variety of power sources and systematic metering and control are enabled.

Secure and Efficient Privacy-Preserving Identity-Based Batch Public Auditing with Proxy Processing

  • Zhao, Jining;Xu, Chunxiang;Chen, Kefei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.1043-1063
    • /
    • 2019
  • With delegating proxy to process data before outsourcing, data owners in restricted access could enjoy flexible and powerful cloud storage service for productivity, but still confront with data integrity breach. Identity-based data auditing as a critical technology, could address this security concern efficiently and eliminate complicated owners' public key certificates management issue. Recently, Yu et al. proposed an Identity-Based Public Auditing for Dynamic Outsourced Data with Proxy Processing (https://doi.org/10.3837/tiis.2017.10.019). It aims to offer identity-based, privacy-preserving and batch auditing for multiple owners' data on different clouds, while allowing proxy processing. In this article, we first demonstrate this scheme is insecure in the sense that malicious cloud could pass integrity auditing without original data. Additionally, clouds and owners are able to recover proxy's private key and thus impersonate it to forge tags for any data. Secondly, we propose an improved scheme with provable security in the random oracle model, to achieve desirable secure identity based privacy-preserving batch public auditing with proxy processing. Thirdly, based on theoretical analysis and performance simulation, our scheme shows better efficiency over existing identity-based auditing scheme with proxy processing on single owner and single cloud effort, which will benefit secure big data storage if extrapolating in real application.

An Analysis of Privacy and Accuracy for Privacy-Preserving Techniques by Matrix-based Randomization (행렬 기반 랜덤화를 적용한 프라이버시 보호 기술의 안전성 및 정확성 분석)

  • Kang, Ju-Sung;An, A-Ron;Hong, Do-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.53-68
    • /
    • 2008
  • We study on the practical privacy-preserving techniques by matrix-based randomization approach. We clearly examine the relationship between the two parameters associated with the measure of privacy breach and the condition number of matrix in order to achieve the optimal transition matrix. We propose a simple formula for efficiently calculating the inverse of transition matrix which are needed in the re-construction process of random substitution algorithm, and deduce some useful connections among standard error and another parameters by obtaining condition numbers according to norms of matrix and the expectation and variance of the transformed data. Moreover we give some experimental results about our theoretical expressions by implementing random substitution algorithm.

Ransomware Prevention and Steganography Security Enhancement Technology Using Format Preserving Encryption (형태보존암호화를 이용한 랜섬웨어 방지 및 스테가노그래피 보안강화기술)

  • Lim, Ji-hwan;Na, Gwan-Woo;Woo, Jae-Min;Seo, Hwa-joeng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.805-811
    • /
    • 2018
  • Recently, Format-Preserving-Encryption (FEA) was suggested by the National Security Research institute (NSR) as an encryption method while maintaining the format without a distortion to the intended information to be encrypted. In this paper, we propose a scheme to solve conventional cyber security problems by using FEA scheme. First, we present the method to encrypt signatures and extensions with FEA in order to effectively defend against Ransomeware attacks. This technique can mitigate the exposure to the Ransomeware by encrypting the minimum information. Second, in order to reduce the secret information for Steganography, we introduce a new way to minimize the secret information with FEA. Finally, we compare the operation speed by encryption with FEA and Lightweight Encryption Algorithm (LEA), furthermore when we optimize FEA we want to compare with the performance improvement accompanying with it.

Risk Management of Digital Information Resources Preservation in University Libraries (디지털 정보자원 보존의 위험관리 분석: 대학도서관 전자정보실 중심으로)

  • 서은경
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.1
    • /
    • pp.5-29
    • /
    • 2003
  • University libraries have developed digital information resources for digital services and have tried to preserve valuable digital information. Because digital preservation raises challenges of a fundamentally different nature which we added to the problems to preserving traditional format materials, it is necessary that preserving digital resources must be discussed and researched actively. This study conducts risk management for exploring preserving technologies and assessing tools. It is found that most university libraries have used format conversion frequently and do not use the emulation technology. It is also found that medium refreshing has the lowest risk probability and isk impact, but information migration and emulation technology have the highest in the risk probability and in the risk impact individually and the absence of full-time professional staff causes high risk.

A Practical Privacy-Preserving Cooperative Computation Protocol without Oblivious Transfer for Linear Systems of Equations

  • Kang, Ju-Sung;Hong, Do-Won
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • We propose several practical SMC protocols for privacy-preserving cooperative scientific computations. We consider two important scientific computations which involve linear equations: the linear systems of equations problem and the linear least-square problem. The protocols proposed in this paper achieve acceptable security in the sense of Du-Zhan's paradigm and t-wise collusion-resistance, and their communication complexity is O(tm), where t is a security parameter and m is the total number of participants. The complexity of our protocol is significantly better than the previous result O($m^2/{\mu}$) of [4], in which the oblivious transfer protocol is used as an important building block.

Semantics-aware Obfuscation for Location Privacy

  • Damiani, Maria Luisa;Silvestri, Claudio;Bertino, Elisa
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-160
    • /
    • 2008
  • The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and reference architecture.