• 제목/요약/키워드: Presence Agent

검색결과 727건 처리시간 0.032초

폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과 (Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber)

  • 이미춘;조을룡
    • Elastomers and Composites
    • /
    • 제49권2호
    • /
    • pp.117-126
    • /
    • 2014
  • 메틸렌 디이소시아네이트(MDI)가 폴리(메틸 메타크릴레이트)-개질된 전분/스티렌-부타디엔 고무(PMMA-modified starch/SBR) 복합체의 물성을 향상시키기 위하여 새로운 개질제로 조사되었다. 한쪽에는 우레탄 결합의 형성으로 인해 다른 한쪽에는 ${\pi}-{\pi}$ 접착 때문에 MDI는 PMMA-modified starch/SBR 계면에서 중간 결합 역할을 하는 것이 형태학적, 기계적, 동역학적 그리고 열적 분해 연구에 의하여 증명되었다. 결과적으로, MDI의 존재는 PMMA-modified starch/SBR 복합체의 기계적 물성과 열적 안정성을 괄목할만하게 개선하였다. 게다가, 생성된 MDI/PMMA-modified starch/SBR 복합체의 여러 가지 물성에 대한 전분 함량의 효과가 형태학, 가황 특성, 기계적 물성, 톨루엔 팽윤 거동, 그리고 열적 안정성에서 조사되었고 자세하게 논의되었다. MDI/PMMA-modified starch/SBR 복합체는 carbon black/SBR(CB/SBR) 복합체보다 우수한 물성을 보였고, 고무 배합물에서 CB의 대체물로서 재생 가능한 전분의 유력한 사용을 보여주었다.

3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells

  • An, Ju-Hyun;Song, Woo-Jin;Li, Qiang;Bhang, Dong-Ha;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Background: Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. Objectives: In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). Methods: A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. Results: TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. Conclusions: SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.

Inhibitory effect of ethanolic extract of Abeliophyllum distichum leaf on 3T3-L1 adipocyte differentiation

  • Thomas, Shalom Sara;Eom, Ji;Sung, Nak-Yun;Kim, Dong-Sub;Cha, Youn-Soo;Kim, Kyung-Ah
    • Nutrition Research and Practice
    • /
    • 제15권5호
    • /
    • pp.555-567
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Abeliophyllum distichum is a plant endemic to Korea, containing several beneficial natural compounds. This study investigated the effect of A. distichum leaf extract (ALE) on adipocyte differentiation. MATERIALS/METHODS: The cytotoxic effect of ALE was analyzed using cell viability assay. 3T3-L1 preadipocytes were differentiated using induction media in the presence or absence of ALE. Lipid accumulation was confirmed using Oil Red O staining. The mRNA expression of adipogenic markers was measured using RT-PCR, and the protein expressions of mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor gamma (PPAR𝛾) were measured using western blot. Cell proliferation was measured by calculating the incorporation of Bromodeoxyuridine (BrdU) into DNA. RESULTS: ALE reduced lipid accumulation in differentiated adipocytes, as indicated by Oil Red O staining and triglyceride assays. Treatment with ALE decreased the gene expression of adipogenic markers such as Ppar𝛾, CCAAT/enhancer binding protein alpha (C/ebp𝛼), lipoprotein lipase, adipocyte protein-2, acetyl-CoA carboxylase, and fatty acid synthase. Also, the protein expression of PPAR𝛄 was reduced by ALE. Treating the cells with ALE at different time points revealed that the inhibitory effect of ALE on adipogenesis is higher in the early period treatment than in the terminal period. Furthermore, ALE inhibited adipocyte differentiation by reducing the early phase of adipogenesis and mitotic clonal expansion. This was indicated by the lower number of cells in the Synthesis phase of the cell cycle (labeled using BrdU assay) and a decrease in the expression of early adipogenic transcription factors such as C/ebp𝛽 and C/ebp𝛿. ALE suppressed the phosphorylation of MAPK, confirming that the effect of ALE was through the suppression of early phase of adipogenesis. CONCLUSIONS: Altogether, the results of the present study revealed that ALE inhibits lipid accumulation and may be a potential agent for managing obesity.

Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells

  • Lee, Aeri;Gu, HyunJi;Gwon, Min-Hee;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • 제15권5호
    • /
    • pp.591-603
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Unregulated inflammatory responses caused by hyperglycemia may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus fruits and is known to have antioxidant and anticarcinogenic properties. However, the effect of inflammation on the diabetic environment has not been reported to date. In this study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and hyperglycemic conditions. MATERIALS/METHODS: THP-1 cells differentiated by PMA (1 µM) were cultured for 48 h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain reaction analyses. RESULTS: Hesperetin (0-100 µM, 48 h) treatment did not affect cell viability. The tumor necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions, and these increases were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions were increased by hesperetin treatment. CONCLUSIONS: Our results suggest that hesperetin may be a potential agent for suppressing inflammation in diabetes.

심전도용 전극으로의 적용을 위한 폴리피롤 코팅 PVA 나노웹 전기전도성 텍스타일의 제조 (Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode)

  • 김재현;양혁주;조길수
    • 한국의류산업학회지
    • /
    • 제21권3호
    • /
    • pp.363-369
    • /
    • 2019
  • This study developed electroconductive textiles by coating polypyrrole to PET nonwoven-based Polyvinyl Alcohol (PVA) nanoweb made by electrospinning and applying the developed electrotextiles as ECG Electrodes. To find the optimum coating conditions for high electrical conductivity, the ratios of 2.6-Naphthalenedisulfonic acid with Disodium Salt (NDS) vs Ammonium Persulfate (APS) as an oxidant and a doping agent in the solution were changed from 3:7 to 7:3; the immersion time of the specimen in the solution was 1 hour. PVA nanowebs coated with polypyrrole under various conditions were filmed with FE-SEM. FT-IR analysis was also performed to examine the presence of polypyrrole nanoparticles in the PVA nanoweb. The electrical resistance of the treated specimens were measured with a Multimeter. Consequently, the PVA Nano Web was undamaged even after heat treatment that allowed for coating. Uniform polypyrrole nanoparticles then formed on the surface of the PVA nanoweb after coating. The measured electrical resistance was shown to be at least $12K{\Omega}/{\Box }$ from a maximum of $3,456K{\Omega}/{\Box }$. The proper amount of NDS content had a positive effect on the conductivity improvement of electroconductive textiles; in addition, the highest electrical conductivity was achieved with a ratio of 3:7 between NDS and APS.

Anti-Biofilm Activity of Grapefruit Seed Extract against Staphylococcus aureus and Escherichia coli

  • Song, Ye Ji;Yu, Hwan Hee;Kim, Yeon Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1177-1183
    • /
    • 2019
  • Grapefruit seed extract (GSE) is a safe and effective preservative that is used widely in the food industry. However, there are few studies addressing the anti-biofilm effect of GSE. In this study, the anti-biofilm effect of GSE was investigated against biofilm-forming strains of Staphylococcus aureus and Escherichia coli. The GSE minimum inhibitory concentration (MIC) for S. aureus and E. coli were $25{\mu}g/ml$ and $250{\mu}g/ml$, respectively. To investigate biofilm inhibition and degradation effect, crystal violet assay and stainless steel were used. Biofilm formation rates of four strains (S. aureus 7, S. aureus 8, E. coli ATCC 25922, and E. coli O157:H4 FRIK 125) were 55.8%, 70.2%, 55.4%, and 20.6% at $1/2{\times}MIC$ of GSE, respectively. The degradation effect of GSE on biofilms attached to stainless steel coupons was observed (${\geq}1$ log CFU/coupon) after exposure to concentrations above the MIC for all strains and $1/2{\times}MIC$ for S. aureus 7. In addition, the specific mechanisms of this anti-biofilm effect were investigated by evaluating hydrophobicity, auto-aggregation, exopolysaccharide (EPS) production rate, and motility. Significant changes in EPS production rate and motility were observed in both S. aureus and E. coli in the presence of GSE, while changes in hydrophobicity were observed only in E. coli. No relationship was seen between auto-aggregation and biofilm formation. Therefore, our results suggest that GSE might be used as an anti-biofilm agent that is effective against S. aureus and E. coli.

Protective Effects of Ursolic Acid on Osteoblastic Differentiation via Activation of IER3/Nrf2

  • Lee, Sang-im
    • 치위생과학회지
    • /
    • 제19권3호
    • /
    • pp.198-204
    • /
    • 2019
  • Background: Oxidative stress is a known to be associated with in the pathogenesis of many inflammatory diseases, including periodontitis. Ursolic acid is a pentacyclic triterpenoid with has antimicrobial, antioxidative, and anticancer properties. However, the role of ursolic acid in the regulating of osteogenesis remains undetermined. This study was aimed to elucidate the crucial osteogenic effects of ursolic acid and its ability to inhibit oxidative stress by targeting the immediate early response 3 (IER3)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods: Cell proliferation was determined using water-soluble tetrazolium salt assay, cell differentiation was evaluated by alkaline phosphatase (ALP) activity, and formation of calcium nodules was detected using alizarin red S stain. Generation of reactive oxygen species (ROS) was determined using by DCFH-DA fluorescence dye in hydrogen peroxide ($H_2O_2$)-treated MG-63 cells. Expression levels of IER3, Nrf2, and heme oxygenase-1 (HO-1) were analyzed using western blot analysis. Results: Our results showed that ursolic acid up-regulated the proliferation of osteoblasts without any cytotoxic effects, and promoted ALP activity and mineralization. $H_2O_2$-induced ROS generation was found to be significantly inhibited on treatment with ursolic acid. Furthermore, in $H_2O_2$-treated cells, the expression of the early response genes: IER3, Nrf2, and Nrf2-related phase II enzyme (HO-1) was enhanced in the presence of ursolic acid. Conclusion: The key findings of the present study elucidate the protective effects of ursolic acid against oxidative stress conditions in osteoblasts via the IER3/Nrf2 pathway. Thus, ursolic acid may be developed as a preventative and therapeutic agent for mineral homeostasis and inflammatory diseases caused due to oxidative injury.

A Child of Severe Mycoplasma pneumoniae pneumonia with Multiple Organ Failure Treated with ECMO and CRRT

  • Hwang, Woojin;Lee, Yoonjin;Lee, Eunjee;Lee, Jiwon M.;Kil, Hong Ryang;Yu, Jae Hyeon;Chung, Eun Hee
    • Pediatric Infection and Vaccine
    • /
    • 제26권1호
    • /
    • pp.71-79
    • /
    • 2019
  • 8세 남아가 호흡곤란과 기면증을 보이며 응급실에 내원하였다. 극도의 호흡부전을 보이고 있었고 고유량의 산소 공급을 함에도 불구하고 88-90%로 밖에 유지되지 않았고 단순 흉부 방사선 검사에서 전 폐야에 불투과도가 증가하였고 중등도의 흉수를 보였다. 마이코플라스마 폐렴 진단 하에 정맥 macrolide 를 포함한 항생제 치료를 시작하였으나 2병일 째 간, 신장에 다기관 부전 및 급성 호흡부전 증상을 보였다. 정맥-정맥 체외순환막성산소화기를 삽입하였고 지속적 신대체요법도 병행하였다. 18병일 째 성공적으로 체외순환막성산소화기에서 이탈하였고 저산소성 뇌 손상 없이 성공적으로 치료되었기에 본 사례를 보고한다.

금속화재 위험감소 방안에 관한 이론적 연구 (Study on the effective response method to reduce combustible metal fire)

  • 남기훈;이준식
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.600-606
    • /
    • 2018
  • 금속화재는 나트륨(Na), 리튬(Li) 등과 같은 가연성 금속이 연소하는 화재이다. 일반적인 물계, 가스계 소화약제에는 적응성이 없으며 금속화재용 소화약제 또는 건조사로 화재를 진화할 수 있다. 위험물안전관리법상 가연성 금속에 속하는 2류 및 3류 위험물 화재가 최근 5년간 104건이 발생했으며, 가연성 금속을 사용하는 연료전지, 반도체 산업의 발전으로 화재 건수는 더욱 증가할 것으로 예상되고 있다. 하지만 국내에는 금속화재와 관련된 법적 기준이 마련되어 있지 않아 금속화재용 소화약제 및 소화기 개발은 물론 화재 예방 및 대응 시스템 구축이 이루어지지 않고 있다. 이에 본 연구에서는 금속화재의 위험성을 감소시킬 수 있는 방안을 마련하기 위해 국내외 관련 법령 분석 및 금속화재 사례 11건을 분석하였다. 이를 통해 금속화재의 위험성을 감소를 위해 관련 법령 마련에 필요한 요소를 도출하였으며 금속화재 발생 시 소화약제로 사용되고 있는 건조사의 관리 및 지원방안을 제시하였다. 또한, 금속화재의 예방 및 대응에 필요한 안전교육 및 시설 관리 방안을 제시하였다.

마우스 수지상세포의 항원 제시 능력에 대한 이온화 규소수의 biphasic 면역조절 효과 (Biphasic immunomodulatory effects of ionized biosilica water on the antigen-presenting capability of mouse dendritic cells)

  • 이유정;주홍구
    • 대한수의학회지
    • /
    • 제61권2호
    • /
    • pp.14.1-14.7
    • /
    • 2021
  • Biosilica is a silica-based substance derived from the cell walls (frustules) of diatoms. Recently, research into biosilica's biological functions is underway, but little has been reported on the effects of biosilica on immune cells. In this study, we investigated the effect of ionized biosilica water (iBW) on dendritic cells (DCs), which play crucial roles as antigen (Ag)-presenting cells. Treatment with iBW increased the expression of immune response-related markers, closely connected to the maturation of DCs, and the production of tumor necrosis factor-alpha. In addition, iBW-treated DCs (iBW-DCs) had a lower uptake of fluorescein isothiocyanate-dextran than that of control DCs. Mixed leukocyte response analysis used for measuring the Ag-presenting capability of DCs, showed iBW-DCs had a higher capability than that of control DCs. Interestingly, DCs treated with lipopolysaccharide (LPS) and iBW had a lower level of Ag-presenting capability than that of LPS-treated DCs. Taken together, the results indicate that iBW alone can mature DCs, but it decreases the Ag-presenting capability of DCs in the presence of LPS, a representative agent of inflammation. This study may provide valuable information regarding the effect of iBW on immune cells. Further research is needed to investigate how iBW induces the observed biphasic immunomodulatory activity.