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ABSTRACT

BACKGROUND/OBJECTIVES: Unregulated inflammatory responses caused by hyperglycemia 
may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus 
fruits and is known to have antioxidant and anticarcinogenic properties. However, the 
effect of inflammation on the diabetic environment has not been reported to date. In this 
study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and 
its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and 
hyperglycemic conditions.
MATERIALS/METHODS: THP-1 cells differentiated by PMA (1 μM) were cultured for 48 
h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or 
hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 
6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by 
enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain 
reaction analyses.
RESULTS: Hesperetin (0–100 μM, 48 h) treatment did not affect cell viability. The tumor 
necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under 
hyperglycemic conditions compared to normoglycemic conditions, and these increases 
were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased 
in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic 
conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. 
In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to 
treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, 
but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions 
were increased by hesperetin treatment.
CONCLUSIONS: Our results suggest that hesperetin may be a potential agent for suppressing 
inflammation in diabetes.
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INTRODUCTION

Diabetes mellitus is a chronic metabolic disease characterized by abnormal insulin secretion 
or insulin resistance and associated hyperglycemia, in which blood glucose levels are elevated 
[1,2]. The global diabetes prevalence in 2019 was estimated to be 9.3% [3]. Over the past 
decade, studies on the cellular and molecular mechanisms of diabetes and its complications 
have revealed a close association between nutrient excess and derangements in mediators 
of immunity and inflammation [4]. High glucose levels have been shown to induce 
inflammatory cytokine secretion in both clinical and experimental settings [5,6].

Nuclear factor-κB (NF-κB) is a transcription factor involved in the expression of several 
genes, such as those regulating inflammatory and immune responses [7,8]. NF-κB has also 
been involved in the association between chronic diabetes complications, cardiovascular 
disease, and microvascular complications [9]. Among the toll-like receptors (TLRs), TLR2/4 
has an important role in inflammation and diabetes [10]. In several inflammatory diseases, 
expression of TLRs and the downstream signal adapter, myeloid differentiation factor 88 
(MyD88), are also increased, leading to NF-κB activation and induction of genes encoding 
inflammatory mediators such as cytokines and cyclooxygenase-2 (COX-2) [11].

An accumulation of evidence suggests that a chronic elevation of lipopolysaccharide 
(LPS) could have a role in the pathogenesis of insulin resistance in vivo. An elevated LPS 
concentration contributes to low-grade systemic inflammation, a central feature of obesity, 
insulin resistance, and type 2 diabetes [12]. TLRs can recognize various components of 
bacterial cell walls such as LPS, peptidoglycans, and lipopeptides. TLR4 binding to LPS 
activates NF-κB and leads to the production of inflammatory cytokines such as interleukin-6 
(IL-6) and tumor necrosis factor-α (TNF-α) [13]. Liang et al. [12] reported that metabolic 
endotoxemia could be involved in the pathogenesis of insulin resistance in obese and type 2 
diabetes subjects and that targeting TLR4 might be beneficial in these individuals.

IL-6, a proinflammatory cytokine secreted during inflammation by monocytes and 
macrophages, activates lymphocytes to increase antibody production, and its expression 
is elevated in inflammatory lesions. TNF-α also has an important role in triggering 
inflammatory responses by activating macrophages and increasing the production of other 
proinflammatory cytokines [14].

Sirtuins (SIRTs) are members of the class III group of histone deacetylases (HDACs). Interest 
in these proteins is increasing because studies have shown that SIRTs are linked to age-
related diseases, such as cancer, diabetes, and neurological diseases [15-18]. Among the 
SIRTs, SIRT3 is reported to act as an NAD+-dependent deacetylase, and SIRT6 acts as ADP-
ribosyl-transferase [19]. SIRT3 and SIRT6 are important in glucose and lipid metabolism 
[20]. SIRT3 is associated with the generation of reactive oxygen species (ROS), and the 
predominant source of ROS is mitochondria. Excessive ROS levels may contribute to the 
development of type 2 diabetes [21]. A recent study has shown that SIRT6 could regulate the 
expression of NF-κB [22].

Hesperetin is an aglycone form of hesperidin, which is present in peels of several citrus fruits, 
and research on the health effects of hesperetin is progressing actively [23]. Hesperetin has 
been studied for its potential hypolipidemic [24] and anti-cancer properties [25]. Moreover, 
hesperetin exerts effects on diabetes-induced retinal oxidative stress, neuroinflammation, 
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and apoptosis in rats [26]. However, the protective effects and mechanism of hesperetin 
action on the diabetic environment have not been fully described.

Thus, in this study, we investigated the effects and mechanism of action of hesperetin on 
diabetic inflammation in THP-1 cells. By using experimental conditions that mimic diabetic 
complications, we investigated whether hesperetin treatment can modulate inflammation 
through the TLR/MyD88/NF-κB signaling pathways and SIRT expression.

MATERIALS AND METHODS

Reagents
Hesperetin, LPS, 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), and 
PMA were obtained from Sigma Aldrich (St. Louis, MO, USA). Dimethyl sulfoxide (DMSO) 
was obtained from Biosesang (Seongnam, Korea). Quantitative polymerase chain reaction 
(qPCR) primers were procured from Bioneer (Daejeon, Korea). The BCA protein assay kit was 
procured from Thermo Fisher Scientific (Waltham, MA, USA).

Cell culture and sample treatment
The human monocyte cell line THP1 was obtained from Korean Cell Line Bank (Seoul, 
Korea). THP1 cells were cultured in RPMI 1640 medium (Welgene, Daegu, Korea) 
supplemented at 37°C in 5% CO2. For monocyte to macrophage differentiation, THP1 cells 
(4 × 106 cells/mL) were seeded in a cell culture dish in RPMI 1640 medium with 1 μM PMA 
for 48 h. Differentiated THP1 cells were treated with hesperetin for 48 h in the absence or 
presence of LPS for 6 h under normoglycemic (NG, 5.5 mM/L glucose) or hyperglycemic (HG, 
25 mM/L glucose) conditions. Next, medium was collected for measurement of cytokine 
release. Cells were washed in PBS and then harvested.

Cell viability assay
Cytotoxicity effects of hesperetin on cultured THP1 cells were measured by MTT assay. THP1 
cells were seeded at 1 × 105 cells/well in a 24-well plate and treated with hesperetin for 48 h. 
The cells were then treated with LPS (100 ng/mL) for 6 h under NG or HG conditions. Then, 
MTT solution (100 μL; 1 mg/mL) was added, and the cells incubated for a further 3 h. After 
incubation, the supernatant was removed, and the precipitated formazan was solubilized in 
150 μL of 100% DMSO. Absorbance was measured at 570 nm with an EZRead 400 Microplate 
reader (Biochrom, Cambridge, UK).

Western blot
Protein (20 μg) was mixed with buffer (100 mM Tris at pH 7.5, 2% sodium dodecyl sulfate, 
2% glycerol, 1% 2-mercaptoethanol, and 0.01% bromophenol blue), incubated at 100°C for 5 
min, and loaded on 10% polyacrylamide gels. Electrophoresis was performed using the Mini 
Protein Tetra Cell (Bio-Rad, CA, USA). Proteins were transferred to nitrocellulose membranes 
(Carlsbad, CA, USA), and the membranes blocked using blocking buffer (5% non-fat dried 
milk) for 2 h. The membranes were incubated with appropriate primary antibodies, then 
washed and incubated with the appropriate secondary antibody. Next, the membranes were 
visualized by applying the Western Blotting Luminol Reagent (Santa Cruz Biotechnology, 
Dallas, TX, USA) and performing autoradiography on a ChemiDoc XRS+ System (Bio-Rad). 
Equal loading of protein was normalized with β-actin and TATA-binding protein (TBP). The 
NFκB, COX-2, β-actin, and TBP were purchased from Santa Cruz Biotechnology. Acetyl-NFκB 
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(Ac-NF-κB), IL-6, SIRT3, and SIRT6 were purchased from Cell Signaling Technology (Beverly, 
MA, USA). Signal quantification was performed using ImageJ software.

qPCR
Total RNA was isolated with TRIzol reagent (Ambion, Life Technologies, Carlsbad, CA, 
USA). The RNA concentration was measured using an absorbance ratio of 260 and 280 nm 
and a NanoDrop 2000 (Thermo Fisher Scientific). The cDNA was synthesized from total 
RNA using an Omniscript RT kit (QIAGEN, Hilden, Germany). The qPCR was performed 
with the CFX96 Touch Real-Time PCR system (Bio-Rad) and iQ SYBR Green Supermix 
(Bio-Rad) and the following primers (5′ to 3′, Forward [F], Reverse [R]); human TLR2 
(F): GGGTCATCATCAGCCTCTCC, (R): GTGGATGTAATCGTTGTCACTGGA, human 
TLR4 (F): CAGAGTTGCTTTCAATGGCATC, (R): GGAGGTCCAAGAACTAATGTCAGA, 
human MyD88 (F): TGCTGGAGCTGGGACCCAGCATTGAGGAGGA, 
(R): TCAGACACACACAACTTCAGTCGATAG, human NFκB (F): 
GACAAGGTGCAGAAAGATGACAT, (R): TCATACGGTAACACAAGGCCT, human SIRT1 
(F): CGGAAACAATACCTCCACCT, (R): CACCCCAGCTCCAGTTAGAA, human SIRT3 (F): 
ACATCGATGGGCTTGAGAGAGT, (R): CATGAGCTTCAACCAGCTTTGA, human SIRT6 (F): 
GTGCGCTCAGGCTTCCCCAG, (R): GGACAGGTCGGCGTTCCTGC, human β-actin (F): 
CACCCCGTGCTGCTGAC, (R): CCAGAGGCGTACAGGGATAG. Data were analyzed using 
the 2−ΔΔCT method and normalized using β-actin as a housekeeping gene.

Immunofluorescence staining
The cells were seeded at 1 × 105 cells/well in a 24-well plate and subsequently treated with 
hesperetin with LPS (100 ng/mL) treated prior to immunofluorescence staining. The cell 
medium was removed, and the cells washed twice with PBS. The PBS was removed, and 
the cells were fixed with 4% paraformaldehyde (PFA) for 30 min. Next, the 4% PFA was 
removed and the cells washed in PBS. Cells were incubated with NF-κB p65 and Ac-NF-κB 
p65 antibodies. For detection of nucleic acid, 4′,6-diamidino-2-phenylindole (DAPI) solution 
was incubated at 37°C. The mounting solution was dropped on a slide glass, and signal 
quantification was evaluated using a microscope (Leica Microsystems, Wetzlar, Germany).

Enzyme-linked immunosorbent assay (ELISA)
The IL-6 and TNF-α ELISA kits were purchased from Abcam (Cambridge, MA, USA) and used 
to evaluate the effect of hesperetin on cytokine levels in LPS-activated, PMA-differentiated 
THP-1 macrophages under NG or HG conditions. The cells were seeded at 1 × 105 cells/well in 
24-well plates and treated with hesperetin for 48 h followed by LPS (100 ng/mL) for 6 h before 
harvesting. Cytokine concentrations in the supernatants of THP-1 macrophage cell cultures 
were determined by using the ELISA kits according to the manufacturer's instructions.

Statistical analysis
Results are reported as means ± SD. Each experiment was performed at least three times. 
Statistical significance was assessed by applying one-way analysis of variance (ANOVA; SPSS 
version 25.0 software) followed by Dunnett's post hoc test. Statistical significance is expressed 
as #P < 0.05 and ##P < 0.01 compared with normoglycemic (NG) results or *P < 0.05 and **P < 
0.01 compared with the LPS + hyperglycemic + hesperetin 0 μM (H0) results.
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RESULTS

Cytotoxic range of hesperetin in LPS-treated THP1 macrophages under high 
glucose conditions
The concentration of LPS and/or glucose required to create an environment that mimics 
diabetic conditions at the cellular level was determined. Inflammation was confirmed 
by measuring the COX-2 expression level. Fig. 1A shows the results of an experiment to 
determine LPS concentration in the absence of glucose treatment. The COX-2 expression 
level increased in cells with LPS 100 ng/mL and LPS 500 ng/mL compared to that in untreated 
LPS. However, treatment with LPS 500 ng/mL resulted in a slight decrease in COX-2 
expression compared to that with LPS 100 ng/mL. Thus, we used a concentration of LPS 100 
ng/mL in this experiment. Fig. 1B shows the results of an experiment to determine the COX-2 
expressions at various concentration of glucoses with a 100 ng/mL LPS concentration. MTT 
assay was performed to study the effect of hesperetin on cell viability after 48 h incubation 
(Fig. 1C). THP1 cells (1 × 105 cells/mL) were cultured in the presence of LPS (100 ng/mL) under 
NG or HG conditions. Cells were exposed to different concentrations of hesperetin (0–100 
μM) for 48 h, and the results showed that hesperetin treatment and LPS stimulation did not 
affect cell viability in THP1 macrophages.

Hesperetin suppresses release of proinflammatory cytokines in LPS-treated 
THP1 macrophages under hyperglycemic conditions
To examine whether hesperetin could inhibit high glucose and LPS-induced inflammatory 
cytokine expressions in differentiated THP1 cells, the cells were treated with 10–50 μM 
hesperetin for 48 h, then stimulated using LPS 100 ng/mL for 6 h. Cell culture media were 
collected for measurement of cytokine release using ELISA (Fig. 2A and B) and western 
blotting (Fig. 2C). In the HG and LPS + HG conditions, TNF-α and IL-6 expressions were 
significantly increased compared to that under NG conditions and significantly decreased 
when the cells were treated with hesperetin.
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Hesperetin regulates TLR-mediated signaling pathway-related TLR2, TLR4, 
and MyD88 gene expressions in LPS-stimulated THP1 macrophages under 
hyperglycemic conditions
qPCR was performed to confirm the mRNA expressions of TLR2/4 and MyD88 in THP-1 
macrophages exposed to high glucose and LPS-induced inflammatory conditions that mimic 
complex diabetic diseases. The inhibitory effect of hesperetin on the activation of TLR2/4 and 
MyD88 was also investigated. The mRNA level expressions of TLR2/4 and MyD88 increased 
under HG and LPS + HG conditions compared to that under NG conditions. However, the 
expressions of these molecules were significantly decreased following hesperetin treatment 
(Fig. 3). Modulating TLRs may be a useful strategy in preventing diabetic complications, 
given the crucial role of inflammation in microvascular and associated complications [27]. 
Our results suggested that hesperetin regulates inflammatory responses within the TLR2, 
TLR4, and MyD88 pathways.

Hesperetin reduces NFκB protein and mRNA expressions in LPS-treated THP1 
macrophage under hyperglycemic conditions
Western blotting, qPCR, and immunofluorescence assay were performed to examine the 
expression of NFκB in THP1 cells stimulated with LPS and cultured under hyperglycemic 
conditions. The potential inhibitory effect of hesperetin on the activation of NFκB was 
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also investigated. NFκB protein expression in the nucleus increased in the HG and LPS + 
HG conditions and decreased when cells were treated with hesperetin (Fig. 4A, B, and C). 
Consistent with protein expression results, the mRNA level of NFκB increased in HG and LPS 
+ HG conditions compared to that under the NG condition but decreased significantly in 
response to treatment with hesperetin (Fig. 4D). Using immunofluorescence, the expression 
of NFκB and the active form of Ac-NF-κB were shown to be increased under HG and LPS + 
HG conditions and decreased in cells treated with 50 μM hesperetin (Fig. 4E and F). These 
results indicated that hesperetin treatment could suppress NFκB expression by blocking 
NFκB translocation to the nucleus.
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Hesperetin increases SIRT3 and SIRT6 expressions in LPS-treated THP1 
macrophages under hyperglycemic conditions
We analyzed the effect of hesperetin treatment on the expression levels of SIRT3 and SIRT6 
in THP-1 macrophages cultured under diabetes-mimicking conditions by performing western 
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blot and qPCR. As shown in Fig. 5A, western blotting showed that SIRT3 protein expression 
increased under the NG condition but decreased under the HG and LPS + HG conditions. 
Conversely, SIRT3 protein expression increased following treatment with hesperetin. 
Consistent with this, SIRT3 mRNA levels increased significantly with hesperetin 25 and 50 
μM treatment (Fig. 5B); similarly, SIRT6 mRNA levels increased (Fig. 5C), but there was no 
significance to the changes.

DISCUSSION

High blood glucose levels in type 2 diabetic patients are reported to increase inflammatory 
cytokines and ROS expressions via the polyol pathway, nicotinamide adenine dinucleotide 
phosphate oxidase, advanced glycation end products pathway, and the mitochondrial 
electron transport system [28,29]. Increased Inflammatory cytokine and ROS levels 
contribute to malignant circulation, which contributes to an increased incidence of 
complications and reduced insulin secretion [30-32].

Several natural components present in common foods can inhibit the expression of 
inflammatory cytokines. For instance, curcumin can regulate high glucose-induced 
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Fig. 5. Modulation of SIRT3 and SIRT6 protein expressions by hesperetin in LPS-treated THP-1 macrophages under hyperglycemic conditions. SIRT3 and SIRT6 
protein levels were evaluated by western blot analysis and normalized to TBP (A). SIRT3 and SIRT6 mRNA levels were evaluated by quantitative polymerase chain 
reaction (B, C). The data are representative of at least three independent experiments. Data were analyzed using the 2−ΔΔCT method. 
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proinflammatory cytokine production in monocytes [33]. The present study investigated 
hesperetin, a flavanone glycoside in citrus fruits. The study aimed to determine whether 
hesperetin could be a therapeutic agent against inflammation, particularly inflammatory 
responses that contribute to diabetes and diabetic complications. Increased secretion of 
inflammatory cytokines is known to reduce insulin sensitivity and induce diabetes, and 
abnormal expression levels are accompanied by systemic low-level inflammatory conditions, 
which are ultimately responsible for the onset of diabetic complications [34,35].

Several studies have suggested that inflammatory markers, such as TNF-α and IL-6, are 
associated with diabetes and glucose disorders [36,37]. According to Xie et al. [38] blueberries 
can reduce proinflammatory cytokine TNF-a and IL-6 production in mouse macrophages. 
Also, Guha et al. [39] reported that a high glucose level can upregulate the expression of 
TNF-α in THP-1 cells. In support of those studies, herein, we show that the expression of 
TNF-α and IL-6 is significantly decreased by hesperetin treatment compared to that under 
hyperglycemic and LPS + hyperglycemic conditions. Thus, hesperetin is considered to have 
anti-inflammatory properties effective against diabetes.

Increased TLR4 and NF-κB levels have been reported in patients with inflammatory chronic 
kidney disease, non-alcoholic fatty liver disease, and diabetes and can lead to increases in 
other proinflammatory cytokines [40,41]. In addition, an increase in TLR2 in an LPS-induced 
inflammatory environment leads to enhanced NF-κB activation and COX-2 expression 
[42]. According to Ghanim et al. [43] in normal-weight men and women, when taken with 
a high-fat/high-carbohydrate meal, orange juice can prevent meal-induced oxidative and 
inflammatory stresses, including increased endotoxin levels and TLR expression. Previous 
studies have also reported that phytochemicals such as resveratrol [41] and curcumin [27] are 
effective against diabetes by inhibiting TLR signaling. Our results have shown that hesperetin 
treatment can significantly reduce TLR2, TLR4, and MyD88 mRNA levels in LPS-treated THP-1 
macrophages under hyperglycemic conditions, suggesting that hesperetin inhibits TLR 
activation in LPS-induced inflammation.

The expression of inflammatory cytokines is necessarily accompanied by NF-κB activity. 
When NF-κB is activated by LPS and a high glucose level, it migrates from the cytoplasm 
to the nucleus and induces gene expression [44]. This results in the expression of 
proinflammatory cytokines that lead to diabetic complications. According to Yang et al. [45] 
epigallocatechin gallate inhibits inflammatory agents such as LPS and proinflammatory 
cytokines such as TNF-α. Another study showed that resveratrol inhibits the expressions 
of COX-2 and inducible nitric oxide synthase by inhibiting NF-κB activation induced by 
proinflammatory stimulants such as LPS and H2O2 [46,47]. Our data showed that NF-
κB expression and mRNA levels increased in THP-1 macrophages treated with LPS and/
or maintained under hyperglycemic conditions and decreased following treatment with 
hesperetin. Furthermore, as a result of immunofluorescence staining, the expression of Ac-
NF-κB was reduced by treatment with hesperetin. Thus, hesperetin inhibits the activation of 
NF-κB, which is mediated by several proinflammatory stimuli in diabetic complications.

The activity of SIRTs in metabolic syndrome is presumed to be related to aging, nutrition, 
and type 2 diabetes [48]. SIRT3 and SIRT6 are associated with dysregulated metabolism 
and other complications observed in diabetes. [48]. Elliott et al. [49] reported a decrease in 
fasting and postprandial blood glucose levels and decreased postprandial insulin levels in 
type 2 diabetes patients treated with resveratrol. Our data showed that SIRT3/6 protein and 
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mRNA expressions in THP-1 macrophages maintained in a diabetes-mimicking environment 
increased following treatment with hesperetin. Therefore, hesperetin may produce effective 
therapeutic outcomes in diabetes by regulating SIRT 3/6 expression.

In the present study, we observed that treatment with hesperetin modulates inflammatory 
cytokine release, NF-κB acetylation, and SIRT3/6 expression via the TLR/MyD88/NF-κB 
signaling pathways. Thus, we propose that hesperetin may be a potential therapeutic agent 
for preventing diabetes and diabetic complications.
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