• Title/Summary/Keyword: Prescaler

Search Result 38, Processing Time 0.023 seconds

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

A CMOS Frequency divider for 2.4/5GHz WLAN Applications with a Simplified Structure

  • Yu, Q.;Liu, Y.;Yu, X.P.;Lim, W.M.;Yang, F.;Zhang, X.L.;Peng, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • In this paper, a dual-band integer-N frequency divider is proposed for 2.4/5.2 GHz multi-standard wireless local area networks. It consists of a multi-modulus imbalance phase switching prescaler and two all-stage programmable counters. It is able to provide dual-band operation with high resolution while maintaining a low power consumption. This frequency divider is integrated with a 5 GHz VCO for multi-standard applications. Measurement results show that the VCO with frequency divider can work at 5.2 GHz with a total power consumption of 22 mW.

Two-Stage Ring Oscillator using Phase-Look-Ahead Mehtod and Its Application to High Speed Divider-by-Two Circuit (진상 위상 기법을 이용한 2단 링 구조 발진기 및 고속 나누기 2 회로의 고찰)

  • Hwang, Jong-Tae;Woo, Sung-Hun;Hwang, Myung-Woon;Ryu, Ji-Youl;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3181-3183
    • /
    • 1999
  • A CMOS two-stage oscillator applicable to requiring in- and quadrature-phase components such as RF and data retiming applications are presented using phase-look-ahead technique. This paper clearly describes the operation principle of the presented two-stage oscillator and the principle can be also applicable to the high speed high speed divide-by-two is usually used for prescaler of the frequency synthesizer. Also, the sucessful oscillation of the proposed oscillator using PLA is confirmed through the experiment. The test vehicle is designed using 0.8 ${\mu}m$ N-well CMOS process and it has a maximum 914MHz oscillation showing -75dBclHz phase noise at 100kHz offset with single 2V supply.

  • PDF

Implementation of 5.0GHz Wide Band RF Frequency Synthesizer for USN Sensor Nodes (USN 센서노드용 5.0GHz 광대역 RF 주파수합성기의 구현)

  • Kang, Ho-Yong;Kim, Se-Han;Pyo, Cheol-Sig;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.32-38
    • /
    • 2011
  • This paper describes implementation of the 5.0GHz RF frequency synthesizer with 0.18${\mu}m$ silicon CMOS technology being used as an application of the IEEE802.15.4 USN sensor node transceiver modules. To get good performance of speed and noise, design of the each module like VCO, prescaler, 1/N divider, fractional divider with ${\Sigma}-{\Delta}$ modulator, and common circuits of the PLL has been optimized. Especially to get excellent performance of high speed and wide tuning range, N-P MOS core structure and 12 step cap banks have been used in design of the VCO. The chip area including pads for testing is $1.1{\times}0.7mm^2$, and the chip area only core for IP in SoC is $1.0{\times}0.4mm^2$. Through analysing of the fabricated frequency synthesizer, we can see that it has wide operation range and excellent frequency characteristics.

Implementation of RF Frequency Synthesizer for IEEE 802.15.4g SUN System (IEEE 802.15.4g SUN 시스템용 RF 주파수 합성기의 구현)

  • Kim, Dong-Shik;Yoon, Won-Sang;Chai, Sang-Hoon;Kang, Ho-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.57-63
    • /
    • 2016
  • This paper describes implementation of the RF frequency synthesizer with $0.18{\mu}m$ silicon CMOS technology being used as an application of the IEEE802.15.4g SUN sensor node transceiver modules. Design of the each module like VCO, prescaler, 1/N divider, ${\Delta}-{\Sigma}$ modulator, and common circuits of the PLL has been optimized to obtain high speed and low noise performance. Especially, the VCO has been designed with NP core structure and 13 steps cap-bank to get high speed, low noise, and wide band tuning range. The output frequencies of the implemented synthesizer is 1483MHz~2017MHz, the phase noise of the synthesizer is -98.63dBc/Hz at 100KHz offset and -122.05dBc/Hz at 1MHz offset.

Implementation of 1.9GHz RF Frequency Synthesizer for USN Sensor Nodes (USN 센서노드용 1.9GHz RF 주파수합성기의 구현)

  • Kang, Ho-Yong;Kim, Nae-Soo;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.49-54
    • /
    • 2009
  • This paper describes implementation of the 1.9GHz RF frequency synthesizer with $0.18{\mu}m$ silicon CMOS technology being used as an application of the USN sensor node transceiver modules. To get good performance of speed and noise, design of the each module like VCO, prescaler, 1/N divider, fractional divider with ${\Sigma }-{\Delta}$ modulator, and common circuits of the PLL has been optimized. Especially to get good performance of speed, power consumption, and wide tuning range, N-P MOS core structure has been used in design of the VCO. The chip area including pads for testing is $1.2{\times}0.7mm^2$, and the chip area only core for IP in SoC is $1.1{\times}0.4mm^2$. The test results show that there is no special spurs except -63.06dB of the 6MHz reference spurs in the PLL circuitry. There is good phase noise performance like -116.17dBc/Hz in 1MHz offset frequency.

Design of 5.0GHz Wide Band RF Frequency Synthesizer for USN Sensor Nodes (USN 센서노드용 50GHz 광대역 RF 주파수합성기의 설계)

  • Kang, Ho-Yong;Kim, Nae-Soo;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.87-93
    • /
    • 2008
  • This paper describes implementation of the 5.0GHz RF frequency synthesizer with $0.18{\mu}m$ silicon CMOS technology being used as an application of the IEEE802.15.4 USN sensor node transceiver modules. To get good performance of speed and noise, design of the each module like VCO, prescaler, 1/N divider, fractional divider with ${\Sigma}-{\Delta}$ modulator, and common circuits of the PLL has been optimized. Especially to get good performance of speed, power consumption, and wide tuning range, N-P MOS core structure has been used in design of the VCO. The chip area including pads for testing is $1.1*0.7mm^2$, and the chip area only core for IP in SoC is $1.0*0.4mm^2$. Through comparing and analysing of the designed two kind of the frequency synthesizer, we can conclude that if we improve a litter characteristics there is no problem to use their as IPs.

Design of Frequency Synthesizer using Novel Architecture Programmable frequency Divider (새로운 구조의 프로그램어블 주파수 분주기를 사용한 주파수 합성기 설계)

  • 김태엽;박수양;손상희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.619-624
    • /
    • 2002
  • In this paper, a novel architecture of programmable divider with fifty percent duty cycle output and programmable dividing number has been proposed. Through HSPICE simulation, a 900MHz frequency synthesizer with proposed (sequency divider has designed in a standard 0.25㎛ CMOS technology To verify the operation of proposed frequency divider, a chip had been fabricated using 0.65㎛ 2-poly, 3-metal standard CMOS processing and experimental result shows that the proposed frequency divider works well. The designed voltage controlled oscillator(VCO) has a center frequency of 900MHz a tuning range of $\pm$10%, and a gain of 154HHz/V. The simulated frequency synthesizer performance has a settling time of 1.5$\mu$s, a frequency range from 820MHz to IGHz and power consumption of 70mW at 2.5V power supply voltage.