• Title/Summary/Keyword: Preprocessing networks structure

Search Result 19, Processing Time 0.02 seconds

Modeling Differential Global Positioning System Pseudorange Correction

  • Mohasseb, M.;El-Rabbany, A.;El-Alim, O. Abd;Rashad, R.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.21-26
    • /
    • 2006
  • This paper focuses on modeling and predicting differential GPS corrections transmitted by marine radio-beacon systems using artificial neural networks. Various neural network structures with various training algorithms were examined, including Linear, Radial Biases, and Feedforward. Matlab Neural Network toolbox is used for this purpose. Data sets used in building the model are the transmitted pseudorange corrections and broadcast navigation message. Model design is passed through several stages, namely data collection, preprocessing, model building, and finally model validation. It is found that feedforward neural network with automated regularization is the most suitable for our data. In training the neural network, different approaches are used to take advantage of the pseudorange corrections history while taking into account the required time for prediction and storage limitations. Three data structures are considered in training the neural network, namely all round, compound, and average. Of the various data structures examined, it is found that the average data structure is the most suitable. It is shown that the developed model is capable of predicting the differential correction with an accuracy level comparable to that of beacon-transmitted real-time DGPS correction.

  • PDF

Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm (모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.285-291
    • /
    • 2020
  • In manufacturing, humans are being replaced with robots, but expert skills remain difficult to convert to data, making them difficult to apply to industrial robots. One method is by visual motion recognition, but physical features may be judged differently depending on the image data. This study aimed to improve the accuracy of vision methods for estimating the posture of humans. Three OpenPose vision models were applied: MPII, COCO, and COCO+foot. To identify the effects of face-covering accessories and image preprocessing on the Convolutional Neural Network (CNN) structure, the presence/non-presence of accessories, image size, and filtering were set as the parameters affecting the identification of a human's posture. For each parameter, image data were applied to the three models, and the errors between the actual and predicted values, as well as the percentage correct keypoints (PCK), were calculated. The COCO+foot model showed the lowest sensitivity to all three parameters. A <50% (from 3024×4032 to 1512×2016 pixels) reduction in image size was considered acceptable. Emboss filtering, in combination with MPII, provided the best results (reduced error of <60 pixels).

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Transformer Network for Container's BIC-code Recognition (컨테이너 BIC-code 인식을 위한 Transformer Network)

  • Kwon, HeeJoo;Kang, HyunSoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.19-26
    • /
    • 2022
  • This paper presents a pre-processing method to facilitate the container's BIC-code recognition. We propose a network that can find ROI(Region Of Interests) containing a BIC-code region and estimate a homography matrix for warping. Taking the structure of STN(Spatial Transformer Networks), the proposed network consists of next 3 steps, ROI detection, homography matrix estimation, and warping using the homography estimated in the previous step. It contributes to improving the accuracy of BIC-code recognition by estimating ROI and matrix using the proposed network and correcting perspective distortion of ROI using the estimated matrix. For performance evaluation, five evaluators evaluated the output image as a perfect score of 5 and received an average of 4.25 points, and when visually checked, 224 out of 312 photos are accurately and perfectly corrected, containing ROI.

Design of Multi-FPNN Model Using Clustering and Genetic Algorithms and Its Application to Nonlinear Process Systems (HCM 클러스처링과 유전자 알고리즘을 이용한 다중 FPNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;안태천
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.343-350
    • /
    • 2000
  • In this paper, we propose the Multi-FPNN(Fuzzy Polynomial Neural Networks) model based on FNN and PNN(Polyomial Neural Networks) for optimal system identifacation. Here FNN structure is designed using fuzzy input space divided by each separated input variable, and urilized both in order to get better output performace. Each node of PNN structure based on GMDH(Group Method of Data handing) method uses two types of high-order polynomials such as linearane and quadratic, and the input of that node uses three kinds of multi-variable inputs such as linear and quadratic, and the input of that node and Genetic Algorithms(GAs) to identify both the structure and the prepocessing of parameters of a Multi-FPNN model. Here, HCM clustering method, which is carried out for data preproessing of process system, is utilized to determine the structure method, which is carried out for data preprocessing of process system, is utilized to determance index with a weighting factor is used to according to the divisions of input-output space. A aggregate performance inddex with a wegihting factor is used to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of this aggregate abjective function which it is acailable and effective to design to design and optimal Multi-FPNN model. The study is illustrated with the aid of two representative numerical examples and the aggregate performance index related to the approximation and generalization abilities of the model is evaluated and discussed.

  • PDF

Designing Bigdata Platform for Multi-Source Maritime Information

  • Junsang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.111-119
    • /
    • 2024
  • In this paper, we propose a big data platform that can collect information from various sources collected at ocean. Currently operating ocean-related big data platforms are focused on storing and sharing created data, and each data provider is responsible for data collection and preprocessing. There are high costs and inefficiencies in collecting and integrating data in a marine environment using communication networks that are poor compared to those on land, making it difficult to implement related infrastructure. In particular, in fields that require real-time data collection and analysis, such as weather information, radar and sensor data, a number of issues must be considered compared to land-based systems, such as data security, characteristics of organizations and ships, and data collection costs, in addition to communication network issues. First, this paper defines these problems and presents solutions. In order to design a big data platform that reflects this, we first propose a data source, hierarchical MEC, and data flow structure, and then present an overall platform structure that integrates them all.

Dynamic Gesture Recognition for the Remote Camera Robot Control (원격 카메라 로봇 제어를 위한 동적 제스처 인식)

  • Lee Ju-Won;Lee Byung-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1480-1487
    • /
    • 2004
  • This study is proposed the novel gesture recognition method for the remote camera robot control. To recognize the dynamics gesture, the preprocessing step is the image segmentation. The conventional methods for the effectively object segmentation has need a lot of the cole. information about the object(hand) image. And these methods in the recognition step have need a lot of the features with the each object. To improve the problems of the conventional methods, this study proposed the novel method to recognize the dynamic hand gesture such as the MMS(Max-Min Search) method to segment the object image, MSM(Mean Space Mapping) method and COG(Conte. Of Gravity) method to extract the features of image, and the structure of recognition MLPNN(Multi Layer Perceptron Neural Network) to recognize the dynamic gestures. In the results of experiment, the recognition rate of the proposed method appeared more than 90[%], and this result is shown that is available by HCI(Human Computer Interface) device for .emote robot control.

A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer (그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구)

  • Ji Hun Bae;Ju Hwan Lee;Gwang Hyun Yu;Gyeong Ju Kwon;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Recently, a convolutional neural network (CNN) based system is being developed to overcome the limitations of human resources in the apple quality classification of farmhouse. However, since convolutional neural networks receive only images of the same size, preprocessing such as sampling may be required, and in the case of oversampling, information loss of the original image such as image quality degradation and blurring occurs. In this paper, in order to minimize the above problem, to generate a image patch based graph of an original image and propose a random walk-based positional encoding method to apply the graph transformer model. The above method continuously learns the position embedding information of patches which don't have a positional information based on the random walk algorithm, and finds the optimal graph structure by aggregating useful node information through the self-attention technique of graph transformer model. Therefore, it is robust and shows good performance even in a new graph structure of random node order and an arbitrary graph structure according to the location of an object in an image. As a result, when experimented with 5 apple quality datasets, the learning accuracy was higher than other GNN models by a minimum of 1.3% to a maximum of 4.7%, and the number of parameters was 3.59M, which was about 15% less than the 23.52M of the ResNet18 model. Therefore, it shows fast reasoning speed according to the reduction of the amount of computation and proves the effect.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF