• Title/Summary/Keyword: Preprocessing System

Search Result 712, Processing Time 0.03 seconds

PREPROCESSING EFFECTS ON ON-LINE SSC MEASUREMENT OF FUJI APPLE BY NIR SPECTROSCOPY

  • Ryu, D.S.;Noh, S.H.;Hwang, I.G.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.560-568
    • /
    • 2000
  • The aims of this research were to investigate the preprocessing effect of spectrum data on prediction performance and to develop a robust model to predict SSC in intact apple. Spectrum data of 320 Fuji apples were measured with the on-line transmittance measurement system at the wavelength range of 550∼1100nm. Preprocess methods adopted for the tests were Savitzky Golay, MSC, SNV, first derivative and OSC. Several combinations of those methods were applied to the raw spectrum data set to investigate the relative effect of each method on the performance of the calibration model. PLS method was used to regress the preprocessed data set and the SSCs of samples, and the cross-validation was to select the optimal number of PLS factors. Smoothing and scattering corection were essential in increasing the prediction performance of PLS regression model and the OSC contributed to reduction of the number of PLS factors. The first derivative resulted in unfavorable effect on the prediction performance. MSC and SNV showed similar effect. A robust calibration model could be developed by the preprocessing combination of Savitzky Golay smoothing, MSC and OSC, which resulted in SEP= 0.507, bias=0.032 and R$^2$=0.8823.

  • PDF

Ontology based Preprocessing Scheme for Mining Data Streams from Sensor Networks (센서 네트워크의 데이터 스트림 마이닝을 위한 온톨로지 기반의 전처리 기법)

  • Jung, Jason J.
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.67-80
    • /
    • 2009
  • By a number of sensors and sensor networks, we can collect environmental information from a certain sensor space. To discover more useful information and knowledge, we want to employ data mining methodologies to sensor data stream from such sensor spaces. In this paper, we present a novel data preprocessing scheme to improve the performances of the data mining algorithms. Especially, ontologies are applied to represent meanings of the sensor data. For evaluating the proposed method, we have collected sensor streams for about 30 days, and simulated them to compare with other approaches.

  • PDF

Ensemble-By-Session Method on Keystroke Dynamics based User Authentication

  • Ho, Jiacang;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • There are many free applications that need users to sign up before they can use the applications nowadays. It is difficult to choose a suitable password for your account. If the password is too complicated, then it is hard to remember it. However, it is easy to be intruded by other users if we use a very simple password. Therefore, biometric-based approach is one of the solutions to solve the issue. The biometric-based approach includes keystroke dynamics on keyboard, mice, or mobile devices, gait analysis and many more. The approach can integrate with any appropriate machine learning algorithm to learn a user typing behavior for authentication system. Preprocessing phase is one the important role to increase the performance of the algorithm. In this paper, we have proposed ensemble-by-session (EBS) method which to operate the preprocessing phase before the training phase. EBS distributes the dataset into multiple sub-datasets based on the session. In other words, we split the dataset into session by session instead of assemble them all into one dataset. If a session is considered as one day, then the sub-dataset has all the information on the particular day. Each sub-dataset will have different information for different day. The sub-datasets are then trained by a machine learning algorithm. From the experimental result, we have shown the improvement of the performance for each base algorithm after the preprocessing phase.

Radiometric and Geometric Correction of the KITSAT-1 CCD Earth Images (우리별 1호 지구 관측 영상의 방사학적 및 기하학적 보정)

  • 이임평;김태정
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.26-42
    • /
    • 1996
  • The CCD Earth Images Experiment(CEIE) is one of the main payload of the KITSAT-1. Since it was launched on Oct. 10, 1992, the CEIE has taken more than 500 images on the Earth surface world-wide so far. An image from the space is very different from a feature on the real Earth surface due to various radiometric and geometric distortions. Preprocessing to remove those distortions has to take place before the images data are processed and analyzed further for various applications. This paper describes the procedure to perform preprocessing including radiometric and geometric correction.e-processing system. The GCP marking using this technique showed a sufficient accuracy for KITSAT1,2 narrow camera images.

Performance Improvement of Optical Character Recognition for Parts Book Using Pre-processing of Modified VGG Model (변형 VGG 모델의 전처리를 이용한 부품도면 문자 인식 성능 개선)

  • Shin, Hee-Ran;Lee, Sang-Hyeop;Park, Jang-Sik;Song, Jong-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.433-438
    • /
    • 2019
  • This paper proposes a method of improving deep learning based numbers and characters recognition performance on parts of drawing through image preprocessing. The proposed character recognition system consists of image preprocessing and 7 layer deep learning model. Mathematical morphological filtering is used as preprocessing to remove the lines and shapes which causes false recognition of numbers and characters on parts drawing. Further.. Further, the used deep learning model is a 7 layer deep learning model instead of VGG-16 model. As a result of the proposed OCR method, the recognition rate of characters is 92.57% and the precision is 92.82%.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

Interactive Typography System using Combined Corner and Contour Detection

  • Lim, Sooyeon;Kim, Sangwook
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Interactive Typography is a process where a user communicates by interacting with text and a moving factor. This research covers interactive typography using real-time response to a user's gesture. In order to form a language-independent system, preprocessing of entered text data presents image data. This preprocessing is followed by recognizing the image data and the setting interaction points. This is done using computer vision technology such as the Harris corner detector and contour detection. User interaction is achieved using skeleton information tracked by a depth camera. By synchronizing the user's skeleton information acquired by Kinect (a depth camera,) and the typography components (interaction points), all user gestures are linked with the typography in real time. An experiment was conducted, in both English and Korean, where users showed an 81% satisfaction level using an interactive typography system where text components showed discrete movements in accordance with the users' gestures. Through this experiment, it was possible to ascertain that sensibility varied depending on the size and the speed of the text and interactive alteration. The results show that interactive typography can potentially be an accurate communication tool, and not merely a uniform text transmission system.

A Study on the Video Compression Pre-processing Method for Video Transmission and Target Detection in Ultra-narrowband Environment (초협대역 환경에서 영상전송 및 표적탐지를 위한 영상압축 전처리 방법에 대한 연구)

  • Im, Byungwook;Baek, Seungho;Jun, Kinam;Kim, Dokyoung;Jung, Juhyun;Kim, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • Due to the continued demand for high-definition video, video compression technology is steadily developing and the High Efficiency Video Coding standard was established in 2013. However, despite the development of this compression technology, it is very difficult to smoothly transmit VGA-level videos in Ultra-narrowband environments. In this paper, the target information preprocessing algorithm is presented for smooth transmission of target images moving in forest or open-terrain in Ultra-narrowband environment. In addition, for algorithm verification, the target information preprocessing algorithm was simulated and the simulated results were compared with the video compression result without the algorithm being applied.

Single-channel Demodulation Algorithm for Non-cooperative PCMA Signals Based on Neural Network

  • Wei, Chi;Peng, Hua;Fan, Junhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3433-3446
    • /
    • 2019
  • Aiming at the high complexity of traditional single-channel demodulation algorithm for PCMA signals, a new demodulation algorithm based on neural network is proposed to reduce the complexity of demodulation in the system of non-cooperative PCMA communication. The demodulation network is trained in this paper, which combines the preprocessing module and decision module. Firstly, the preprocessing module is used to estimate the initial parameters, and the auxiliary signals are obtained by using the information of frequency offset estimation. Then, the time-frequency characteristic data of auxiliary signals are obtained, which is taken as the input data of the neural network to be trained. Finally, the decision module is used to output the demodulated bit sequence. Compared with traditional single-channel demodulation algorithms, the proposed algorithm does not need to go through all the possible values of transmit symbol pairs, which greatly reduces the complexity of demodulation. The simulation results show that the trained neural network can greatly extract the time-frequency characteristics of PCMA signals. The performance of the proposed algorithm is similar to that of PSP algorithm, but the complexity of demodulation can be greatly reduced through the proposed algorithm.

Preprocessing method for enhancing digital audio quality in speech communication system (음성통신망에서 디지털 오디오 신호 음질개선을 위한 전처리방법)

  • Song Geun-Bae;Ahn Chul-Yong;Kim Jae-Bum;Park Ho-Chong;Kim Austin
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.200-206
    • /
    • 2006
  • This paper presents a preprocessing method to modify the input audio signals of a speech coder to obtain the finally enhanced signals at the decoder. For the purpose, we introduce the noise suppression (NS) scheme and the adaptive gain control (AGC) where an audio input and its coding error are considered as a noisy signal and a noise, respectively. The coding error is suppressed from the input and then the suppressed input is level aligned to the original input by the following AGC operation. Consequently, this preprocessing method makes the spectral energy of the music input redistributed all over the spectral domain so that the preprocessed music can be coded more effectively by the following coder. As an artifact, this procedure needs an additional encoding pass to calculate the coding error. However, it provides a generalized formulation applicable to a lot of existing speech coders. By preference listening tests, it was indicated that the proposed approach produces significant enhancements in the perceived music qualities.