Purpose: In order to improve the audit quality of a company, an in-depth analysis is required to categorize the audit report in the form of a text document containing the details of the external audit. This study introduces a systematic methodology to extract keywords for each group that determines the differences between groups such as 'audit plan' and 'interim audit' using audit reports collected in the form of text documents. Methods: The first step of the proposed methodology is to preprocess the document through text mining. In the second step, the documents are classified into groups using machine learning techniques and based on this, important vocabularies that have a dominant influence on the performance of classification are extracted. In the third step, the association rules for each group's documents are found. In the last step, the final keywords for each group representing the characteristics of each group are extracted by comparing the important vocabulary for classification with the important vocabulary representing the association rules of each group. Results: This study quantitatively calculates the importance value of the vocabulary used in the audit report based on machine learning rather than the qualitative research method such as the existing literature search, expert evaluation, and Delphi technique. From the case study of this study, it was found that the extracted keywords describe the characteristics of each group well. Conclusion: This study is meaningful in that it has laid the foundation for quantitatively conducting follow-up studies related to key vocabulary in each stage of auditing.
본 연구는 초등학생 대상의 인공지능 교육에서 다루는 알고리즘의 종류, 활용하는 도구와 데이터의 범주를 논의하는 것을 목적으로 초등예비교사 11명을 대상으로 15주 동안 데이터, 인공지능 알고리즘, 인공지능 교육 플랫폼을 교육 및 실습한 후 설문하여 초등학생 수준을 고려한 데이터와 알고리즘의 범주, 교육 도구를 제시하고 적합성을 분석하였다. 설문을 통해 교사가 수업목적에 따라 사전에 데이터를 선정 및 가공하여 교육에 사용하는 것이 가장 적합하며, 분류와 예측 알고리즘이 초등 인공지능 교육에서 다루기에 적절하다는 결론을 도출하였다. 또한, 엔트리가 인공지능 교육 도구로서 가장 적합하며 인공지능의 학습이라는 개념을 교육하기 위해 수학적 지식을 설명하는 자료가 필요함을 확인하였다. 본 연구는 초등학생의 인공지능 교육에서 다루는 알고리즘과 데이터의 범주를 구체적으로 제시하고 이와 관련된 수학교육에 대한 필요성과 적절한 교육 도구를 분석하였다는 점에서 의의가 있다.
Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권7호
/
pp.1773-1793
/
2023
Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.
In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.
디지털 전환(digital transformation)이란 기업이나 조직이 기존의 비즈니스 모델이나 영업 활동을 디지털 기술을 활용하여 변화시키거나 새롭게 혁신하는 과정을 말한다. 이는 시장에서의 경쟁력 강화, 고객 경험 개선 그리고 새로운 사업의 발굴 등을 위하여 다양한 디지털 기술들 - 클라우드 컴퓨팅, IoT, 인공 지능 등 - 의 활용이 요구된다. 또한 시장, 고객 그리고 생산 환경에 대한 지식과 통찰을 도출할 수 있도록 올바른 데이터의 선택, 분석 가능한 상태로의 데이터 전처리(preprocessing) 그리고 목적에 적합한 체계적인 분석들에 대한 올바른 프로세스 정립을 필요로 한다. 이러한 디지털 빅 데이터의 유용성은 적합한 전처리와 함께 정보 및 가설 탐색 그리고 지식과 통찰의 시각화를 위한 탐색적 데이터 분석(exploratory data analysis; EDA)의 올바른 적용이 결정한다. 본 논문에서는 EDA의 철학과 기본 개념에 대하여 재고찰과 함께 효과적인 시각화를 위하여 시각화 핵심 정보, 그래프 문법(grammar of graphics)에 기초한 정보 표현 방법 그리고 최종 시각화 검토 기준인 ACCENT 원칙을 논의한다.
자동차 사고는 차량 간의 충돌로 인해 발생되며, 이로 인해 차량의 손상과 함께 인적, 물적 피해가 유발된다. 본 연구는 CCTV에 의해 촬영되어 YouTube에 업로드된 차량사고 동영상으로 부터 추출된 2,550개의 이미지 프레임을 기반으로 차량사고 탐지모델을 개발하였다. 전처리를 위해 roboflow.com을 사용하여 바운딩 박스를 표시하고 이미지를 다양한 각도로 뒤집어 데이터 세트를 증강하였다. 훈련에서는 You Only Look Once 버전 8 (YOLOv8) 모델을 사용하였고, 사고 탐지에 있어서 평균 0.954의 정확도를 달성하였다. 제안된 모델은 비상시에 경보 전송을 용이하게 하는 실용적 의의를 가지고 있다. 또한, 효과적이고 효율적인 차량사고 탐지 메커니즘 개발에 대한 연구에 기여하고 스마트폰과 같은 기기에서 활용될 수 있다. 향후의 연구에서는 소리와 같은 추가 데이터의 통합을 포함하여 탐지기능을 정교화하고자 한다.
음성 신호처리 환경에서 잡음이 섞인 신호를 개선할 목적으로 음성향상 기법이 많이 이용되고 있다. 잡음추정 알고리즘은 변화하는 환경에 빠르게 적응할 수 있어야 하며 음성신호의 영향을 줄이기 위해 음성신호가 존재하지 않는 구간에서만 잡음의 파워를 갱신한다. 이러한 방법은 음성구간검출이 선행되어야 한다. 그러나 잡음에 열화된 음성신호에 묵음구간이 존재하지 않을 경우, 위와 같이 음성검출을 통한 묵음구간에서의 잡음 추정 방법 및 SNR 추정 방법이 적용될 수 없다. 본 논문에서는 묵음구간이 존재하지 않는 연속음성신호에서 SNR을 추정하는 기법을 제안한다. 유성음의 안정구간에서는 단구간 내 피치의 변화가 매우 작아 피치주기에 따른 음성신호의 파형이 유사하게 나타난다. 따라서 잡음이 음성에 부가되었을 때 피치주기에 따른 인접파형의 유사도를 통해 SNR을 추정한다. 무성음에서는 잡음의 영향이 수신신호의 성도성분 추정에 영향을 미치기 때문에 잡음환경에서 추정된 성도성분과 수신신호 스펙트럼 간의 거리를 이용하여 SNR을 추정한다. 마지막으로, 음성신호의 에너지가 유성음에 대부분 분포하기 때문에, 부가성 잡음 환경에서 유성음의 에너지를 음성신호의 에너지로 근사화하여 SNR을 추정할 수 있다.
음성 신호처리 환경에서 잡음이 섞인 신호를 개선할 목적으로 음성향상 기법이 많이 이용되고 있다. 잡음추정 알고리즘은 변화하는 환경에 빠르게 적응할 수 있어야 하며 음성신호의 영향을 줄이기 위해 음성신호가 존재하지 않는 구간에서만 잡음의 파워를 갱신한다. 이러한 방법은 음성구간검출이 선행되어야 한다. 그러나 잡음에 열화된 음성신호에 묵음구간이 존재하지 않을 경우, 위와 같이 음성검출을 통한 묵음구간에서의 잡음 추정 방법 및 SNR 추정 방법이 적용될 수 없다. 본 논문에서는 묵읍구간이 존재하지 않는 연속음성신호에서 SNR을 추정하는 기법을 제안한다. 음성신호는 MBE(Multi-Band Excitation) 발성 모델에 따라 유 무성음으로 구분할 수 있다. 그리고 에너지가 유성음에 대부분 분포하기 때문에, 부가성 잡음환경에서 유성음의 에너지를 음성신호의 에너지로 근사화하여 SNR을 추정할 수 있다. 제안하는 방식은 연속음성신호를 IMBE (Improved Multi-Band Exciation) 보코더를 이용해 유 무성음 대역으로 구분하고, 각각 대역의 에너지 정보를 아용하여 단구간 음성신호의 SNR을 계산한다. 전체 음성구간의 SNR은 단구간 SNR의 평균값을 통해 추정한다.
Bridge deterioration shows the change of bridge condition during its operation, and predicting bridge deterioration is important for implementing predictive protection and planning future maintenance. However, in practical application, the raw inspection data of bridges are not continuous, which has a greater impact on the accuracy of the prediction results. Therefore, two kinds of bridge deterioration models are established in this paper: one is based on the traditional regression theory, combined with the distribution fitting theory to preprocess the data, which solves the problem of irregular distribution and incomplete quantity of raw data. Secondly, based on the theory of Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN), the network is trained using the raw inspection data, which can realize the prediction of the future deterioration of bridges through the historical data. And the inspection data of 60 prestressed concrete box girder bridges in Xiamen, China are used as an example for validation and comparative analysis, and the results show that both deterioration models can predict the deterioration of prestressed concrete box girder bridges. The regression model shows that the bridge deteriorates gradually, while the LSTM-RNN model shows that the bridge keeps great condition during the first 5 years and degrades rapidly from 5 years to 15 years. Based on the current inspection database, the LSTM-RNN model performs better than the regression model because it has smaller prediction error. With the continuous improvement of the database, the results of this study can be extended to other bridge types or other degradation factors can be introduced to improve the accuracy and usefulness of the deterioration model.
Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.