• Title/Summary/Keyword: Premixed cement

Search Result 27, Processing Time 0.03 seconds

Fundamental Evaluation and Hydration Heat Analysis of Low Heat Concrete with Premixed Cement (저발열형 Premixed Cement를 사용한 콘크리트의 기초물성 평가 및 수화열 해석에 관한 연구)

  • Yoon, Ji-Hyun;Jeon, Joong-Kyu;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump, compressive strength and dry shrinkage according to concrete with premixed cement, ternary concrete and OPC concrete for using concrete with premixed cement. The results of experiment are founded that concrete with premixed cement have sufficient performances such as workability, compressive strength and dry shrinkage. Also, the results of hydration heat analysis are founded that concrete with premixed cement have more performance than ternary concrete and OPC concrete at a point of view for the quality control such as thermal crack reducing and economic benefit. Therefore, it is desirable that concrete with premixed cement should be used to rise durability performance and convenience of maintenance.

An Experimental Study on the Quality Deviation of Concrete Using Premixed Cement and Non-Premixed Cement (프리믹스 혼합시멘트를 사용한 콘크리트의 품질편차에 관한 연구)

  • Bae, Jun-Young;Kim, Jong-Back;Cho, Sung-Hyun;Roh, Hyeon-Seung;Kim, Jung-Hwan;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.569-572
    • /
    • 2008
  • This study carried out to evaluate the quality deviation according to Premixed and Non-Premixed cement for normal and high strength concrete using blast furnace slag and fly ash. The results of experiment are founded that concrete using premixed cement have more performance than non-premixed cement at a point of view for the quality deviations both strength and Chloride ion diffusion. Therefore, it is desirable that premixed cement should be used to decrease strength deviation in high strength concrete and durability deviation in normal strength concrete.

  • PDF

Study on Hydration Heat Analysis of Pier Foundation-Column Using Low Heat Concrete (저발열 콘크리트를 사용한 교각 기초-기둥의 수화열 해석에 관한 연구)

  • Jeon, Joong-Kyu;Kim, Sun-Gil;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump and compressive strength for field application of low heat concrete with premixed cement. The results of experiment show that low heat concrete with premixed cement have sufficient performances on the workability and compressive strength. In addition, hydration heat analysis shows that low heat concrete with premixed cement make sure of target thermal cracking index. Therefore, it is desirable to apply the low heat concrete with premixed cement on pier foundation-column.

Characteristics of Concrete Length Change Rate according to Premixed Cement Types and CGS replacement rate (프리믹스 시멘트 종류 및 CGS 치환에 따른 콘크리트의 길이변화율 특성)

  • Han, Jun-Hui;Kim, Su-Hoo;Beak, Sung-Jin;Han, Soo-Hwan;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.154-155
    • /
    • 2022
  • In this study, propose a plan to efficiently utilize CGS, a by-product generated from IGCC, as a mixed fine aggregate for concrete. The effect of the premixed cement types and CGS replacement rate on the overall characteristics and length change rate of concrete was analyzed. As a result of the analysis, the effect of CGS was found to be insignificant, and the effect of cement was found to be dominant.

  • PDF

pH, Ion Release Capability, and Solubility Value of Premixed Mineral Trioxide Aggregates (Premixed MTA제재의 pH, 이온 유리 정도, 용해도)

  • Seolah, Back;YuJi, Jang;Junghwan, Lee;Joonhaeng, Lee;Jisun, Shin;Jongbin, Kim;Miran, Han;JongSoo, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.379-391
    • /
    • 2022
  • The current study aimed to compare the pH, solubility value, and ion release capability of premixed mineral trioxide aggregates (MTAs) versus conventional pulp capping materials before and after setting. The following materials were used: resin-modified calcium silicate cement (TheraCal LC®, TLC), resin-modified calcium hydroxide cement (Ultra-BlendTM plus, UBP), and 2 kinds of premixed MTA (Endocem MTA® premixed regular [EMPR] and Well-RootTM PT [WRP]). The specimens of each material were prepared before and after setting and were immersed in distilled water. The materials' pH and solubility value were assessed. Next, three kinds of ion (calcium, sulfide, and strontium) released by pulp capping materials were evaluated via inductively coupled plasma atomic emission spectrometry. In the after-setting group, the pH of TLC and UBP decreased. However, the pH of the premixed MTAs increased with time. TLC released a higher concentration of strontium ion compared with the other materials. Meanwhile, EMPR released a significantly high concentration of sulfide ion (p < 0.05). In the after-setting group, the 2 kinds of premixed MTAs released a significantly higher concentration of calcium ion compared with the other materials (p < 0.05). In the after-setting group, EMPR had a significantly low solubility value (p < 0.05). The Kruskal-Wallis test, followed by the Mann-Whitney U test with Bonferroni correction, was used in statistical analysis. In conclusion, resin-modified calcium silicate cement, modified calcium hydroxide cement, and the 2 kinds of premixed MTAs had an alkaline pH and low solubility value and they released various concentrations of ions after setting.

Application Performance for Test Section of Premixed Fly Ash Concrete Pavement (프리믹스 플라이애시 콘크리트 포장 현장 적용 특성)

  • Hong, Seung-Ho;Han, Seung-Hwan;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.765-768
    • /
    • 2008
  • The prevent methods of Alkali-Silica Reaction (ASR) are studying after the failure cases by ASR were reported in Korea. When ASR failure is causing to the step of maintenance, the available repair methods were rarely studied in the World. In this study, premixed fly ash cement was applied to prevent ASR in the concrete pavement. The ratio of fly ash and cement is 20 percent and 80 percent by weight of total cementious material. The construction performance of premixed fly ash cementious concrete pavement was studied that the application is verify to performance collected data during the constructing in the field. The freeze-thaw test was studied to verify durability of the premixed fly ash cementious material made specimen in the laboratory. The results show that construction performance and durability are well condition in this test section and freeze-thaw test.

  • PDF

Analyzing the Engineering Properties of Cement Mortar Using Mixed Aggregate with Reject Ash (혼합골재에 리젝트애시를 프리믹스하여 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.247-252
    • /
    • 2017
  • The aim of this research is the feasibility analysis of the reject ash premixed cement mortar with combined aggregate. Namely, for the combined aggregate with two different qualities of aggregates, a fundamental properties of cement mortar was evaluated depending on various replacing ratios of reject ash(Ri). According to the experimental results, the combined aggregate consisted with low-quality aggregate and sea sand did not change the flow value depending on the reject ash while the combined aggregates consisted with low quality aggregate and sea sand; and consisted exploded debris sand and sea sand the increasing reject ash increased the air content with increased replacing ratio of reject ash. In the case of compressive strength, as the replacing ratio of reject ash was increased, the compressive strength was increased. It is considered that when 5% of reject ash replacing ratio made similar quality of cement mortar with favorable quality aggregate, hence, it can be suggested that 5% replacement of reject ash for desirable fluidity and compressive strength of concrete.

The Crack Inspection and Repair System on the Concrete Pier Caused by Frost Damage (동해를 입은 콘크리트 교각의 균열조사 및 보수시공)

  • 장태민;권영진;김철호;이병훈;최롱;오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.551-556
    • /
    • 1996
  • It is the aim of this study to introduce the performence and application of new repair system for the concrete pier by durability failure caused frost damage. The elementary performance of this repair system is as follows (1) All the layer in the repair system are cement based, same with the mother con'c. (2) This repair use SBR admixture. (3) This cement and mortar powder for this repair system are premixed and ready to adding admixture at the job site.

  • PDF

Push-out bond strength and intratubular biomineralization of a hydraulic root-end filling material premixed with dimethyl sulfoxide as a vehicle

  • Ju-Ha Park;Hee-Jin Kim;Kwang-Won Lee;Mi-Kyung Yu;Kyung-San Min
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.8.1-8.8
    • /
    • 2023
  • Objectives: This study was designed to evaluate the parameters of bonding performance to root dentin, including push-out bond strength and dentinal tubular biomineralization, of a hydraulic bioceramic root-end filling material premixed with dimethyl sulfoxide (Endocem MTA Premixed) in comparison to a conventional powder-liquid-type cement (ProRoot MTA). Materials and Methods: The root canal of a single-rooted premolar was filled with either ProRoot MTA or Endocem MTA Premixed (n = 15). A slice of dentin was obtained from each root. Using the sliced specimen, the push-out bond strength was measured, and the failure pattern was observed under a stereomicroscope. The apical segment was divided into halves; the split surface was observed under a scanning electron microscope, and intratubular biomineralization was examined by observing the precipitates formed in the dentinal tubule. Then, the chemical characteristics of the precipitates were evaluated with energy-dispersive X-ray spectroscopic (EDS) analysis. The data were analyzed using the Student's t-test followed by the Mann-Whitney U test (p < 0.05). Results: No significant difference was found between the 2 tested groups in push-out bond strength, and cohesive failure was the predominant failure type. In both groups, flake-shaped precipitates were observed along dentinal tubules. The EDS analysis indicated that the mass percentage of calcium and phosphorus in the precipitate was similar to that found in hydroxyapatite. Conclusions: Regarding bonding to root dentin, Endocem MTA Premixed may have potential for use as an acceptable root-end filling material.