• Title/Summary/Keyword: Preimplantation

Search Result 300, Processing Time 0.019 seconds

TGF-beta1, and TGF-beta Receptor Type I and Type II are present in Bovine Embryos

  • Kim, B. K.;H. J. Chung;Park, J. H.;J. H. Woo;Park, M. Y.;H. H. Seong;W. K. Chang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.69-69
    • /
    • 2003
  • Although effect of TGF$\beta$$_1$ on preimplantation embryo development was reported at mice, little information relevant to this subject is known in bovine. The objectives of this study were to investigate TGF$\beta$$_1$, and TGF$\beta$$_1$ receptors type I and II expression, known as important factors in the embryo development, at unfertilized oocytes and fertilized embryos that will be used as basic data to be compared to NT embryos. We postulated that TGF$\beta$$_1$ may have a beneficial effect on the preimplantation embryo and show different expression patterns as embryo stages change. We have used immunocytochemistry to investigate the presence in unfertilized oocytes and preimplantation embryos of TGF$\beta$$_1$ and the essential components of the TGF$\beta$$_1$ signalling pathway, TGF$\beta$$_1$ receptors type I and II. We found that both receptors, as well as TGF$\beta$$_1$, were present in the unfertilized oocytes. This indicates that TGF$\beta$$_1$, is a maternally expressed protein. At the morulae and blastocyst stages the TGF$\beta$$_1$ receptor type II was not present, but the TGF$\beta$$_1$ receptor type I was present at both stages and we can confirm the TGF$\beta$$_1$ expression of high level at 8-cell stage. These findings support our hypothesis that the TGF$\beta$$_1$, and TGF$\beta$$_1$ receptors may interact with the oocyte and preimplantation embryo, and that TGF$\beta$$_1$ signalling may be important for the development of the oocyte and the preimplahtation embryo.

  • PDF

Carbohydrate Metabolism in Preimplantation Stage Embryos and the Role of Metabolites (착상전 초기 배아에서 탄수화물 대사와 그 대사물의 역할)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Proper development of fertilized oocyte to blastocyst is a key step in mammalian development to implantation. During development of preimplantation embryos, the mammalian embryo needs supply the energy substrate for keep viability. Usually mammalian oocyte get substrate especially energy substrate from oviduct and uterus, because it does not store much substrate into cytoplasm during oogenesis. Carbohydrates are known as a main energy substrate for preimplantation stage embryos. Glucose, lactate and pyruvate are essential component in preimplantation embryo culture media and there are stage specific preferences to them. Glucose transporter and $H^+$-monocarboxylate cotransporter are a main mediator for carbohydrate transport and those expression levels are primarily under the control of intrinsic or extrinsic factors like insulin and glucose. Other organic substances, amino acids, lipids and nucleotides are used as energy substance and cellular regulation factor. Though since 1960s, successful development of fertilized embryo to blastocyst has been accomplished with chemically defined medium for example BWW and give rise to normal offspring in mammals, the role of metabolites and the regulation of intermediary metabolism are still poorly understood. Glucose may permit expression of metabolic enzymes and transporters in compacting morula, capable of generating the energy required for blastocyst formation. In addition, it has been suggested that the cytokines can modulate the metabolic rate of carbohydrate in embryos and regulate the preimplantation embryonic development through control the metabolic rate. Recently we showed that lactate can be used as a mediator for preimplantation embryonic development. Those observations indicate that metabolites of carbohydrate are required by the early embryo, not only as an energy source, but also as a key substrate for other regulatory and biosynthetic pathways. In addition metabolites of carbohydrate may involve in cellular activity during development of preimplantation embryos. It is suggested that through these regulation and with other regulation mechanisms, embryo and uterus can prepare the embryo implantation and further development, properly.

  • PDF

Involvement of the Cyclic AMP-Protein Kinase A Pathway in Gap Junctional Communication in Preimplantation Mouse Embryos

  • Haengseok Song;Gye, Myung-Chan;Jun, Jin-Hyun
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • In this study, we have examined the role of cAMP in gap junctional communication (GJC) in preimplantation mouse embryos. GJC was monitored by Lucifer Yellow (LY) injected into one blastomere of compacted embryos. The speed of GJC was defined as the time taken for the last blastomere of the embryo to become visibly fluorescent. The median time for 8-cell embrvos (140 sec) was similar to that for 16-cell (135 sec). To determine whether cAMP and cAMP-dependent protein kinase (PKA) are involved in the regulation of GJC, the effects of PKA inhibitor (H8) and cAMP analogues (Rp-cAMP and 8-Br-cAMP) on dye transfer between blastomeres of compacted embryos were examined. Some of the embryos treated with either H8 or Rp-cAMP failed to transfer LY to all blastomeres within 10 min. In contrast, 8-Br-cAMP speeded up fluorescent dye transfer. The median time to fill all blastomeres with LY was 140 sec in untreated controls and 90 sec in siblings treated with 8-Br-cAMP. Inhibition of PKA by H8 or Rp-cAMP induced delay or arrest in embryo development after compaction, but the increase of intracellular cAMP showed no effect. These findings suggest that GJC in preimplantation mouse embryos is regulated by cAMP-PKA pathway and transient interference by PKA inhibitors induces the developmental delay beyond compaction.

  • PDF

Effect of Co-Culture Mouse Fetal Fibroblast Cell on In Vitro Development of Blastomeres Separated from Mouse Preimplantation Embryos (생쥐 태아 Fibroblast 세포와 공동배양이 초기 생쥐배 분할구의 체외 발생능에 미치는 영향)

  • 김진호;정병헌;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.4
    • /
    • pp.341-346
    • /
    • 1993
  • The development of isolated blastomeres from mammalian preimplantation embryos has been basically studied for the multiplication of embryos from superior animals. Therefore, this study was investigated the effect of co-culture with mouse fetal fibroblast cells(MFFC) on in vitro development of blastomeres from mouse preimplantation embryos. Mature female ICR mice were treated with hormone to induce superovulation and embryos were collected at each 2, 4, and 8-cell stage. Then, after removing zona pellucida with protease, blastomeres were isolated by micropipetting, or reconstituted with different stage blastomere, and incubated for 72 hrs either in T6 or TCM199 or on the monolayer of MFFC, which was prepared with fibroblast cells from 14∼14 day mouse fetus. After incubation, we examined their development rates every day and the nuclei numbers of each blastocyst by Hoechst-33342 staining. In the development rates of blastomeres, there were no significant differences between media but the higher rateswere found in the monolayer of MFFC, regardless of reconsititution. In addition, blastomeres cultured with MFFC had slightly greater number of nuclei than those cultured in single media. Generally, the higher development rates of blastomeres were found from earlier stage embryos than the later ones, regardless of culture conditions. Reconsitituted blastomeres had more nuclei but did not show the higher development rates, compared to the single blastomeres. Taken together, our results suggest that co-culture with MFFC have a beneficial effect on the in vitro development of blastomeres from mouse embryos.

  • PDF

Preimplantation Developmental Ability of Pig Embryos according to Embryonic Compaction Patterns (돼지수정란의 Compaction 양상에 따른 착상전 배발달 양상)

  • Koo, Deog-Bon;Min, Sung-Hun;Park, Hum-Dai
    • Journal of Embryo Transfer
    • /
    • v.25 no.3
    • /
    • pp.179-187
    • /
    • 2010
  • Embryonic compaction is essential for normal preimplantation development in mammals. The present study was to investigate the effects of compaction patterns on developmental competence of pig embryos. The proportion of blastocyst formation derived from compacted morula was higher than those of compacting and pre-compacting morula (P<0.01). Nuclei numbers of inner cell mass (ICM), trophectoderm (TE), and total of blastocysts derived from compacted group were also superior to those of compacting and pre-compacting groups (P<0.05). Then, compaction patterns, developmental ability and structural integrity were compared between mono- and poly-spermic embryos. The rate of compacted morula in mono-spermic embryos was higher than that of poly-spermic embryos (P<0.05). Especially, the rate of blastocyst formation derived from compacted embryos in mono-spermic embryo group was higher than that of poly-spermic embryo group (P<0.05), although no difference was detected between the two groups in the structural integrity. Finally, we confirmed that beta-catenin was differentially expressed according to compaction patterns in morula and blastocyst stage embryos. In conclusion, our results suggest that the compaction patterns during preimplantation development play a direct role in developmetal competence and quality of pig embryos.

Study on the sexing of preimplantation mouse embryo exposed to H-Y ntisera I. Sexing of mouse embryos by cytolytic assay (H-Y항체에 의한 생쥐초기배의 성판별에 관한 연구 I. 세포발육능검사에 의한 성판별)

  • 양부근;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 1988
  • There studies were conducted using inbred ICR mice to examine the sex of preimplantation mouse embryo. The morphological normality of mice embryos treated with the culture medium containing rat H-Y antiserum(10%, v/v) plus complement(20%,v/v) was observed and also the sexing of embryos was investigated by chromosomal analysis. The results obtained were summarized as follows: 1. The viability of preimplantation mouse embryos, which were incubated in vitro with different media condition, was scored 68.9-85.5% in control group. However, 151 embryos normally developed up to blastocyst and 160 embryos were retarded growth or destroyed out of total 311 embryos treated in the medium containing H-Y antiserum(10%, v/v) plus complement(20%,v/v). 2. H-Y antiserum was prepared from inb red rats (Wistar and Donryu strain) with different immunization times (4, 5 and 6th) to examine the specific titer of embryos by the number of immunization. Precentage of normally developed embryos incubated either in the medium containing the antiserum of Wistar plus complement or Donryu plus complement was revealed 50.9, 47.4 and 50.0% (4, 5 and 6th immunization and 47.8, 41.2 and 48.7%, respectively. 3. Twenty two females and five males were identified out of fourty-eight normally developed embryos incubated in the medium containing H-Y antiserum plus complement by chromosomal analysis.

  • PDF

Birth of a healthy baby after preimplantation genetic diagnosis in a carrier of mucopolysaccharidosis type II: The first case in Korea

  • Ko, Duck Sung;Lee, Sun-Hee;Park, Chan Woo;Lim, Chun Kyu
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.4
    • /
    • pp.206-210
    • /
    • 2019
  • Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive lysosomal storage disease caused by mutation of the iduronate-2-sulfatase gene. The mutation results in iduronate-2-sulfatase deficiency, which causes the progressive accumulation of heparan sulfate and dermatan sulfate in cellular lysosomes. The phenotype, age of onset, and symptoms of MPS II vary; accordingly, the disease can be classified into either the early-onset type or the late-onset type, depending on the age of onset and the severity of the symptoms. In patients with severe MPS II, symptoms typically first appear between 2 and 5 years of age. Patients with severe MPS II usually die in the second decade of life although some patients with less severe disease have survived into their fifth or sixth decade. Here, we report the establishment of a preimplantation genetic diagnosis (PGD) strategy using multiplex nested polymerase chain reaction, direct sequencing, and linkage analysis. Unaffected embryos were selected via the diagnosis of a single blastomere, and a healthy boy was delivered by a female carrier of MPS II. This is the first successful application of PGD in a patient with MPS II in Korea.

Endoplasmic reticulum stress in periimplantation embryos

  • Michalak, Marek;Gye, Myung Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.

Methylation Changes of Lysine 9 of Histone H3 during Preimplantation Mouse Development

  • Yeo, Seungeun;Lee, Kyung-Kwang;Han, Yong-Mahn;Kang, Yong-Kook
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.423-428
    • /
    • 2005
  • Immediately after fertilization, a chromatin remodeling process in the oocyte cytoplasm extracts protamine molecules from the sperm-derived DNA and loads histones onto it. We examined how the histone H3-lysine 9 methylation system is established on the remodeled sperm chromatin in mice. We found that the paternal pronucleus was not stained for dimethylated H3-K9 (H3-$m_2K9$) during pronucleus development, while the maternal genome stained intensively. Such H3-$m_2K9$ asymmetry between the parental pronuclei was independent of $HP1{\beta}$ localization and, much like DNA methylation, was preserved to the two-cell stage when the nucleus appeared to be compartmentalized for H3-$m_2K9$. A conspicuous increase in H3-$m_2K9$ level was observed at the four-cell stage, and then the level was maintained without a visible change up to the blastocyst stage. The behavior of H3-$m_2K9$ was very similar, but not identical, to that of 5-methylcytosine during preimplantation development, suggesting that there is some connection between methylation of histone and of DNA in early mouse development.

A Case of Recurrent Spontaneous Abortion Successfully Delivered by Using Preimplantation Genetic Diagnosis (착상전 유전진단을 이용하여 성공적으로 분만한 반복자연유산 1례)

  • Nam, Yoon-Sung;Lee, Sook-Hwan;Oum, Ki-Bung;Lee, Eun-Jung;Chung, Hyung-Min;Cha, Kwang-Yul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.3
    • /
    • pp.307-311
    • /
    • 2000
  • Objective: To report the successful delivery in a patient of recurrent spontaneous abortion caused by chromosomal abnormality. Material and Method: Case report. Results: Twelve oocytes were obtained by in vitro fertilization. Of eleven oocytes fertilized, two embryos turned out to be normal by using fluorescent in situ hybridization on blastomere biopsy. The patient succeeded in pregnancy and the result of amniocentesis was found to be normal. She delivered the healthy female baby by cesarean section. Conclusions: The successful delivery is possible in recurrent spontaneous abortion related with reciprocal translocation by using preimplantation genetic diagnosis.

  • PDF