• Title/Summary/Keyword: Preferential oxidation reaction

Search Result 15, Processing Time 0.025 seconds

Experiment of CO Cleaning Process in DME Autothermal Reformate Gas for PEMFC Application (고분자 전해질 연료전지 적용을 위한 DME 자열개질가스 내 CO제거 공정 특성 연구)

  • Choi, Seung-Hyeon;Bae, Joong-Myeon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.474-480
    • /
    • 2011
  • Hydrocarbon is required to be converted to pure hydrogen without carbon monooxide (CO) for polymer exchange membran fuel cell (PEMFC) applications. In this paper, CO cleaning processes as the downstream of Dimethyl ehter (DME) autothermal reforming process were performed in micro-reactors. Our study suggested two kinds of water gas shift (WGS) reaction process: High Temperature shift (HTS) - Low Temperature shift (LTS), Middle temperature shift (MTS). Firstly, using perovskite catalyst for MTS was decreased effieiciency since methanation. Using HTS-LTS the CO concentration was decreased about 2% ($N_2$ & $H_2O$ free) with the reaction temperature of $420^{\circ}C$ and $235^{\circ}C$ for HTS and LTS, respectively. As the final stage of CO cleaning process, preferential oxidation (PROX) was applied. The amount of additional oxygen need 2 times of stoichiometric at $65^{\circ}C$. The total conversion reforming efficiency of 75% was gained.

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(2) - Ozonation or ACF Adsorption Treatment of Reactive Dyes - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(2) - 반응성염료의 오존산화 및 섬유상활성탄 흡착 처리 -)

  • Han, Myung-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.26-36
    • /
    • 2007
  • This study was carried out to treat the aqueous solutions containing reactive dyes(RB19, RR120 and RY179) by the Ozone demand flask method and adsorption process using activated carbon fiber(ACF) which are one of the main pollutants in dye wastewater. Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients(CQi) and values of the overall utilization efficiency, ${\eta}O_3$, were increased at 40mg/l of ozone dosage in multi-solute dye solutions. ACF(A-15) has much larger specific surface area$(1,584m^2/g-ACF)$ in comparison with granular activated carbon adsorbent (F400, $1,125m^2/g-GAC$), which is commonly used, and most of pores were found to be micropores with pore radius of 2nm and below. It was found that RB19 was most easily adsorbed among the dyes in this study. In the case of PCP (p-chlorophenol) and sucrose, which are single component adsorbate, adsorption capacities of ACF(A-15) were in good agreement with the batch adsorption measurement, and saturation time predicted of ACF columns for these components was also well agreed with practically measured time. But in the case of reactive dyes, which have relatively high molecular weight and aggregated with multi-components, adsorption capacities or saturation time predicted were not agreed with practically measured values.

Study on Pressurized Diesel Reforming System for Polymer Electrolyte Membrane Fuel Cell in Underwater Environment (수중 환경에서 고분자 전해질 연료전지(PEMFC) 공급용 수소 생산을 위한 가압 디젤 개질시스템에 관한 연구)

  • Lee, Kwangho;Han, Gwangwoo;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.528-535
    • /
    • 2017
  • Fuel cells have been spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen which is the fuel of fuel cell can be obtained from a number of sources. Hydrogen source for operating the polymer electrolyte membrane fuel cell(PEMFC) in the current underwater environment, such as a submarine and unmanned underwater vehicles are currently from the metal hydride cylinder. However, metal hydride has many limitations for using hydrogen carrier, such as large volume, long charging time, limited storage capacity. To solve these problems, we suggest diesel reformer for hydrogen supply source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC requires a large volume and complex CO removal system for lowering the CO level to less than 10 ppm. In addition, because the preferential oxidation(PROX) reaction is the strong exothermic reaction, cooling load is required. By changing this PROX reactor to hydrogen separation membrane, the problem from PROX reactor can be solved. This is because hydrogen separation membranes are small and permeable to pure hydrogen. In this study, we conducted the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen separation membrane application. Then, the hydrogen permeation experiments were performed using a Pd alloy membrane for the reformate gas.

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.