• 제목/요약/키워드: Preference clustering

검색결과 80건 처리시간 0.027초

협업 필터링을 이용한 순위 정렬 모델 기반 (IP)TV 프로그램 자동 추천 (Automatic Recommendation of (IP)TV programs based on A Rank Model using Collaborative Filtering)

  • 김은희;표신지;김문철
    • 방송공학회논문지
    • /
    • 제14권2호
    • /
    • pp.238-252
    • /
    • 2009
  • 방송과 융합의 시대로 접어들면서 (IP)TV 단말에서 이용 가능한 프로그램 콘텐츠 수가 급격히 증가 하였다. 이로 인해, 사용자 (시청자)가 선호하는 방송 프로그램 콘텐츠로의 접근성이 주요한 사항이 되었다. 본 논문은 유사 사용자 선호도에 기반을 둔 협업 필터링을 이용하여(IP)TV 프로그램을 효율적으로 사용자에게 자동 추천하는 연구에 관한 내용이다. 개인의 시청 프로그램 선호도를 고려하여 방송 프로그램을 추천하기 위해서, 제안하는 추천 시스템의 구성은 오프라인과 온라인 연산으로 구성된다. 오프라인 연산과정에서 (IP)TV 프로그램, 장르, 채널에 대한 개인의 선호도를 묵시적으로 추론 하는 방법을 제시하고, 동적 퍼지 클러스터링 방법을 사용하여 각 개인의 선호도에 따라 사용자들을 그룹 짓되, 특징 벡터를 장르와 채널에 대한 선호도로 결합하여 사용하는 방법을 제시한다. 또한, (IP)TV 단말에 로그인 한 활동 사용자에게, 높은 정확도로 선호 프로그램을 추천하기 위해서, 활동 사용자와 관심 시청 프로그램이 유사한 사용자들을 유사도 측정 방법을 사용하여 한 번 더 추출하고, 이 추출된 유사 취향 사용자들의 선호 (IP)TV 프로그램들에 대해, EPG를 이용하여 현재 방송되지 않는 프로그램들을 제외시킨다. 마지막 단계에서는 추천 후보 프로그램들에 대해 본 논문에서 제안하는 순위 정렬 모델을 이용하여 추천 우선순위를 결정하여 제시한다. 특별히, 본 논문은 BM(Best Match) 알고리즘을 확장하여 개인 선호도를 고려한 순위 정렬 모델을 제시한다. 실험을 통해, 본 논문에서 제안한 프로그램 자동 추천 알고리듬은 2,441명의 사용자에 대해 5개의 프로그램을 추천하였을 경우, 62.1%의 예측 정확도를 나타내었다.

시간 가중치와 가변형 K-means 기법을 이용한 개인화된 음악 추천 시스템 (A Personalized Music Recommendation System with a Time-weighted Clustering)

  • 김재광;윤태복;김동문;이지형
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.504-510
    • /
    • 2009
  • 근래 들어 개인 적응형 서비스에 대한 관심이 높아지고 있으나 아직 음악에 관련된 서비스는 보편화되어 있지 않다. 그 이유는 음악의 관련 정보를 분석하는 것이 텍스트 기반의 자료에 비해 어렵기 때문이다. 이에 본 논문은 사용자가 선택했던 음악을 분석해서 사용자의 성향을 파악하고 그와 유사한 음악을 추천해주는 시스템을 제안한다. 음악의 속성을 추출하는 방법으로 음파 분석 기법을 사용한다. 음파에서 세 가지의 수치화된 속성을 추출하여 이를 특성 공간에 나타낸다. 이 때 사용자가 선택한 음악이 많이 모여 있는 군집을 분석한다면, 사용자의 취향을 파악할 수 있다. 하지만 몇 개의 군집이 형성될 것인지를 예측하기란 쉽지 않다. 이를 해결하기 위하여 군집의 수를 상황에 따라 유동적으로 변경할 수 있는 가변형 K-means 기법을 제시한다. 이 기법은 군집의 직경 크기를 제한하여, 일정치 이상일 때 군집의 수를 늘리는 방법으로 데이터의 범위를 알고 있을 때 매우 효율적으로 적용할 수 있다. 이 방법을 이용하여 군집의 중심을 찾고 이와 가까운 음악을 추천한다. 또한 사용자의 성향은 꾸준하게 변화하므로 본 논문은 사용자가 근래에 선택한 음악의 반영 비율을 높이고자 무게의 개념을 이용한 시간 가중치 기법을 적용하였다. 그리고 음악의 발매 시기도 고려하여 음악을 추천하는 시스템을 제안한다. 제안 방법의 검증을 위하여 100개의 음악 조각을 통한 실험적 검증을 하였으며 그 결과 제안 방법이 효과적인 것을 보인다.

k-means 클러스터링과 순차 패턴 기법을 이용한 VLDB 기반의 상품 추천시스템 (Product Recommendation System on VLDB using k-means Clustering and Sequential Pattern Technique)

  • 심장섭;우선미;이동하;김용성;정순기
    • 정보처리학회논문지D
    • /
    • 제13D권7호
    • /
    • pp.1027-1038
    • /
    • 2006
  • 대용량 데이터베이스에서의 추천시스템은 많은 문제점들을 지니고 있으므로, 대규모 인터넷 쇼핑몰에 적합한 추천 시스템 구조와 데이터 마이닝 기법의 필요성이 요구되고 있다. 따라서 본 논문에서는 k-mean 클러스터링과 순차 패턴 기법을 이용한 VLDB(very large database) 기반의 상품 추천 시스템을 설계 및 구현한다. 본 논문에서는 사용자의 정보를 일괄처리하고 다양한 카테고리를 계층적으로 정의하며, 탐색엔진에 순차 패턴 마이닝 기법을 이용한다. 예측 모델을 만들기 위하여 사용자의 로그 데이터 중에서 카테고리에 대한 사용자의 선호도를 추출하여 이용한다. 본 논문에서는 실험과 성능 평가를 위하여 국내 인터넷 쇼핑몰에서 30일 동안 수집한 실제 데이터를 이용한다. 또한 성능평가를 위하여 추천 예측 정확율(PRP: Predictive Recommend Precision), 추천 예측 재현율(PRR: Predictive Recommend Recall), 정확도 인수(PF1 : Predictive Factor One-measure)를 제안하여 사용한다. 성능평가 결과 가장 빠른 추천시간 및 학습시간은 O(N)이었고, 다양한 실험에서의 측도들의 값이 상당히 우수하였다.

개인화 영양정보 제공을 위한 소셜 네트워크 서비스 활용방안 (Implementation of Social Network Services for Providing Personalized Nutritious Information on Facebook)

  • 안효진;최재원
    • 한국전자거래학회지
    • /
    • 제19권4호
    • /
    • pp.21-30
    • /
    • 2014
  • 소셜 네트워크 서비스 사용자의 개인 데이터를 활용하는 것은 개인화된 영양정보의 제공을 위한 새로운 자원으로서 활용 가능하다. 기존 영양정보 제공 방식과 비교하여 사용자가 입력한 소셜 네트워크 서비스의 기록을 바탕으로 맞춤화된 정보를 제공하는 방법 및 개인화된 영양정보를 어떻게 제공할 것인지에 대한 연구는 매우 부족한 실정이다. 본 연구는 대표적인 소셜 네트워크 서비스인 페이스북의 사용자들이 입력한 텍스트 데이터를 바탕으로 개인화된 영양정보를 제공하기 위한 방안을 확인하고자 하였다. 이를 위하여 사용자의 페이스북 게시정보를 분석하여 개인별 영양정보를 효과적으로 제공하는 방식을 제시하였다. 연구의 목적에 따라, 본 연구는 수집된 데이터를 이용하여 데이터마이닝 기법 중 군집화를 수행하였다. 사용자 데이터에 대한 군집분석 결과, 나트륨과 당류가 사용자의 식단에서 중요한 변수로 추출되었다. 추가적으로 판매원/제조원에 따라 사용자의 식단과 관련하여 변수의 중요도에 차이가 있음을 확인하였다.

RFM기법과 k-means 기법을 이용한 개인화 추천시스템의 개발 (Development of Personalized Recommendation System using RFM method and k-means Clustering)

  • 조영성;구미숙;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.163-172
    • /
    • 2012
  • 기존 추천시스템의 명시적((Explicit) 협력 필터링 방법은 실용화 되었으나 정확한 아이템의 속성이 반영되지 않는 문제와 희박성과 확장성 문제가 여전히 남아 있다. 본 논문에서는 실시간성과 민첩성이 요구되는 유비쿼터스 상거래에서 고객에게 번거로운 질의 응답 과정이 없이 묵시적인(Implicit) 방법을 이용하여 RFM(Recency, Frequency, Monetary)기법과 k-means 기법을 이용한 개인화 추천시스템을 제안한다. 구매 가능성이 높은 아이템을 추출하기 위해서 고객데이터와 구매이력 데이터를 기반으로 아이템의 속성 반영이 가능한 RFM기법과 k-means 클러스터링을 이용한다. 제안 방법으로 추천의 효율성이 높은 아이템 추천이 가능하도록 고객정보의 속성 변수의 특징 벡터가 적용된 클러스터링 작업과 군집내의 아이템 카테고리 선호도 계산 작업의 전처리를 수행한다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 아이템 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존 시스템과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다.

레저 스포츠 이벤트 참가추구목적에 따른 이용관광지 자원개발 선호도에 관한 연구 (A Study on the Preference of Tourism Resource Development Based on Benefit-sought of Leisure Sport Event Participation)

  • 윤유식;장양례;조상희
    • 한국지역지리학회지
    • /
    • 제15권2호
    • /
    • pp.250-260
    • /
    • 2009
  • 본 연구의 목적은 레저 스포츠 이벤트 활동 참가추구목적에 따른 관광자원 개발 선호 방안을 도출하기 위한 방법으로 다차원 척도법 (MDS)을 이용하였다. 따라서 이에 따른 관광자원개발 선호도에 대한 세분시장별 특성을 파악해 보고자 한다. 연구 분석을 위해 전국 인라인 마라톤 대회 참여자 330부를 이용하였으며, 연구 방법은 SPSS 15.0 for Windows 통계 프로그램을 이용하였다. 결과분석에서는 첫째, 레저 스포츠 활동 참가자의 참가목적에 따른 세분집단을 군집화한 결과 '금전획득 참가목적자', '보통 자아실현참가 목적자', '강한 자아실현참가 목적자' 등 3개의 집단으로 세분화되었으며, 분석결과 세분화된 3집단은 관광자원개발에 영향을 주는 집단으로 밝혀졌다. 따라서 세분화된 집단특성에 따른 만족도를 높이기 위해서는 이들의 선호특성에 맞는 관광자원 개발의 필요성이 요구된다.

  • PDF

선호하는 감성어휘 분석을 통한 남녀대학생의 감성 유형화 (Grouping and Visualization of Preferred Sensations among College students)

  • 한경미;나영주;조길수
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2001년도 추계학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2001
  • 98가지 감성 형용사를 수집하여 176명의 남녀대학생을 대상으로 SD법에 의해 선호도를 조사한 결과, 선호감성어휘는 '로맨틱, 센수얼, 캐주얼, 클래식, 캐릭터, 프린스, 심플, 복고풍, 모던, 수공예, 테크노' 등으로 요약되었는데 이를 바탕으로 군집분석을 시행하여 선호 감성을 유형화시켰다. 남녀대학생이 선호감성은 크게 10가지의 유형으로 나타났는데, 대부분의 대학생들이 '캐주얼파였으나(32.4%), 이는 구체적으로 '비장식개성캐주얼파, 역동쿨개성캐주얼파'였으며, 다음으로는 '단순내추럴파'가 17.3%였다. 이후 '클래식파(9.2%-수공예로맨틱클래식파, 획일적클래식파', '비표현파(8.7%)', '호화개성복고파(6.4%)', '민족감성선호파(4.6%)' 등이 있었다. 대학생을 집단들은 크게 두 개의 선호 감성축(정적-동적, 경량-중량)을 중심으로 가시적으로 그룹화 될 수 있었다.

  • PDF

연관 사용자 군집과 베이지안 분류를 이용한 사용자 선호도 예측 방법 (User Preference Prediction Method Using Associative User Clustering and Bayesian Classification)

  • 정경용;김진현;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.109-111
    • /
    • 2001
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법(Nearest-Neighborhood Method)을 사용하고, 피어슨 상관 계수에 의해 사용자의 유사도를 구하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 연관 사용자 군집과 베이지안 분류를 이음한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성(Sparsity)문제를 해결하기 위하여 ARHP 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도출 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Extraction of User Preference for Hybrid Collaborative Filtering

  • Qing Li;Kim, Byeong-Man;Shin, Yoon-Sik;Lim, En-Ki
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.7-9
    • /
    • 2004
  • With the development of e-commerce and information access, recommender systems have become a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs and preferences. In this paper, clustering technique is applied in the collaborative recommender framework to consider semantic contents available from the user profiles. We also suggest methods to construct user profiles from rating information and attributes of items to accommodate user preferences. Further, we show that the correct application of the semantic content information obtained from user profiles does enhance the effectiveness of collaborative recommendation.

  • PDF

개인화 추천 시스템에서 연관 관계 군집에 의한 아이템 기반의 협력적 필터링 기술 (An Item-based Collaborative Filtering Technique by Associative Relation Clustering in Personalized Recommender Systems)

  • 정경용;김진현;정헌만;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.467-477
    • /
    • 2004
  • 추천 시스템은 예전에는 몇몇 혁신적인 전자상거래(E-commerce) 사이트에서만 사용되어 왔으나 현재는 전자상거래를 새롭게 재구성하는 필수적인 비즈니스 도구가 되어가고 있다. 그리고 협력적 필터링은 이론과 실무 분야 모두에서 가장 성공적으로 평가받은 추천 기법 중 하나이다. 그러나 개인화 추천 시스템을 구축하기 위해서는 두 가지 문제를 동시에 고려해야 한다. 즉 초기 평가 문제와 희박성 문제이다. 본 논문에서는 연관 관계 군집과 연관 규칙의 향상도를 이용하여 이러한 문제를 해결하고자 한다. 사용자의 평가 데이타를 사용하여 아이템간의 향상도를 산출하고, a-cut에 의한 임계값을 아이템들간의 연관성에 적용한다. 연관 관계 군집의 효율성을 높이기 위해서 기존의 Hypergraph Clique Clustering 알고리즘과 본 연구에서 제안하는 Split Cluster Method를 이용하였다. 군집이 완성되면, 각 군집 내부에서 아이템간의 유사도를 산출하고 빠른 액세스를 위해 인덱스를 데이터베이스에 저장한다. 새로운 아이템들의 선호도 예측 시에 생성한 인덱스를 적용시킨다. 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.