• 제목/요약/키워드: Preference clustering

검색결과 80건 처리시간 0.026초

공용환경 설계를 위한 선호도 기반 클러스터링 (Preference-based Clustering for Intelligent Shared Environments)

  • 손기혁;옥창수
    • 산업경영시스템학회지
    • /
    • 제36권1호
    • /
    • pp.64-69
    • /
    • 2013
  • In ubiquitous computing, shared environments adjust themselves so that all users in the environments are satisfied as possible. Inevitably, some of users sacrifice their satisfactions while the shared environments maximize the sum of all users' satisfactions. In our previous work, we have proposed social welfare functions to avoid a situation which some users in the system face the worst setting of environments. In this work, we consider a more direct approach which is a preference based clustering to handle this issue. In this approach, first, we categorize all users into several subgroups in which users have similar tastes to environmental parameters based on their preference information. Second, we assign the subgroups into different time or space of the shared environments. Finally, each shared environments can be adjusted to maximize satisfactions of each subgroup and consequently the optimal of overall system can be achieved. We demonstrate the effectiveness of our approach with a numerical analysis.

OPTIMIZATION OF THE TEST INTERVALS OF A NUCLEAR SAFETY SYSTEM BY GENETIC ALGORITHMS, SOLUTION CLUSTERING AND FUZZY PREFERENCE ASSIGNMENT

  • Zio, E.;Bazzo, R.
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.414-425
    • /
    • 2010
  • In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into "families". On the basis of the decision maker's preferences, each family is then synthetically represented by a "head of the family" solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions.

추천시스템을 위한 k-means 기법과 베이시안 네트워크를 이용한 가중치 선호도 군집 방법 (Clustering Method of Weighted Preference Using K-means Algorithm and Bayesian Network for Recommender System)

  • 박화범;조영성;고형화
    • Journal of Information Technology Applications and Management
    • /
    • 제20권3_spc호
    • /
    • pp.219-230
    • /
    • 2013
  • Real time accessiblity and agility in Ubiquitous-commerce is required under ubiquitous computing environment. The Research has been actively processed in e-commerce so as to improve the accuracy of recommendation. Existing Collaborative filtering (CF) can not reflect contents of the items and has the problem of the process of selection in the neighborhood user group and the problems of sparsity and scalability as well. Although a system has been practically used to improve these defects, it still does not reflect attributes of the item. In this paper, to solve this problem, We can use a implicit method which is used by customer's data and purchase history data. We propose a new clustering method of weighted preference for customer using k-means clustering and Bayesian network in order to improve the accuracy of recommendation. To verify improved performance of the proposed system, we make experiments with dataset collected in a cosmetic internet shopping mall.

Effect of Fatty Acid Profiles on Sensory Properties of Beef Evaluated by Korean and Australian Consumer Groups

  • Cho, Soo-Hyun;Kim, Jae-Hee;Kim, Jin-Hyoung;Park, Beom-Young;Hwang, In-Ho;Lee, Jong-Moon;Seong, Pil-Nam;Kim, Dong-Hun
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.495-500
    • /
    • 2008
  • This study assessed the role of fatty acids on beef preference of 2 consumer groups from South Korea and Australia. Three muscles (longissimus dorsi, triceps brachii, and semimembranosus) were obtained from 36 carcasses (18 Hanwoo steers and 18 Angus steers) and the cooked beef samples were evaluated by 1,080 consumers (720 Korean consumer panels and 360 Australian consumer panels). The cluster analysis showed that the Korean consumers had more significant relationship with fatty acid composition of beef than that of the Australian consumers when evaluated Australian Angus beef Only C20:5(n-3), and C22:5(n-3) affected preference clustering for Australian consumers; while saturated (C16:0 and C 18:0) as well as unsaturated fatty acids [C16:1(n-7), C18:2(n-6), C18:3(n-3), C20:3(n-6), C20:4(n-6), C20:5(n-3), C22:4(n-6), C22:5(n-3)] affected preference clustering for Korean consumers (p<0.05). In the discriminant analysis of Korean consumer's preference clustering, C20:5(n-3) was a significant fatty acid for Australian Angus beef while the C20:4(n-6) and C 18:0 for Korean Hanwoo beef to evaluate the palatability (p<0.05). Therefore, fatty acid compositions impact Korean consumer's preference of beef.

영화 데이터를 위한 쌍별 규합 접근방식의 군집화 기법 (Pairwise fusion approach to cluster analysis with applications to movie data)

  • 김희진;박세영
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.265-283
    • /
    • 2022
  • 사용자들의 영화정보를 기록한 MovieLens 데이터는 추천 시스템 연구에서 아이디어를 탐색하고 검증하는데 상당한 가치가 있는 데이터로, 기존 데이터 분할 및 군집화 알고리즘을 사용하여 사용자 평점 데이터를 기반으로 항목 집합을 분할하는 연구 등에 사용되는 데이터이다. 본 논문에서는 기존 연구에서 대표적으로 사용되었던 영화 평점 데이터와 영화 장르 데이터를 통해 사용자의 장르 선호도를 예측하여 선호도 패턴을 기반으로 사용자를 군집화(clustering)하고, 유의미한 정보를 얻는 연구를 진행하였다. MovieLens 데이터는 영화의 전체 개수에 비해 사용자별 평균 영화 평점 수가 낮아 결측 비율이 높다. 이러한 이유로 기존의 군집화 방법을 적용하는 데 한계가 존재한다. 본 논문에서는 MovieLens 데이터 특성에 모티브를 얻어 쌍별 규합 벌점함수(pairwise fused penalty)를 활용한 볼록 군집화(convex clustering) 기반의 방법을 제안한다. 특히 결측치 대체(missing imputation)도 동시에 해결하는 최적화 문제를 통해 기존의 군집화 분석과 차별화하였다. 군집화는 반복 알고리즘인 ADMM을 통해 제안하는 최적화 문제를 풀어 진행한다. 또한 시뮬레이션과 MovieLens 데이터 적용을 통해 제안하는 군집화 방법이 기존의 방법보다 노이즈 및 이상치에 상대적으로 민감하지 않은 것으로 보인다.

Infinite Relational Model 기반 Co-Clustering을 이용한 영화 추천 (Movie Recommendation Using Co-Clustering by Infinite Relational Models)

  • 김병희;장병탁
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.443-449
    • /
    • 2014
  • 사람의 영화에 대한 선호도에는 개인의 특성과 영화의 속성을 기반으로 하는 다양한 요인이 연관되어 있다. 영화 추천을 위한 사용자-영화-선호도 연관 관계의 분석 기법으로서, 다중 개념 탐색 기법의 특성을 지닌 infinite relational model (IRM)의 활용 가능성을 확인하고, 이를 기초로 영화 선호 유형에 따른 사용자-영화 군집을 탐색한다. 별점으로 표현되는 명시적인 선호도 데이터에 영화 컨텐츠 관련 메타데이터를 추가하여 학습 데이터를 구성하고, 이에 IRM을 적용하여 공군집화(co-clustering)를 수행한 결과, 해석 가능한 다양한 명시적 연관 관계를 발견하였다. 공군집화 결과를 기초로 개인화 추천에서의 다양한 활용 방안을 논의한다.

Fuzzy Clustering with Genre Preference for Collaborative Filtering

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.99-106
    • /
    • 2020
  • 협력 필터링 기반의 추천 시스템에 내재된 확장성 문제는 지난 수십년간 관련 연구의 이슈가 되어 왔다. 클러스터링은 이 문제를 해결하는 유명한 기술인데 낮은 성능으로 인하여 활발히 연구되어 오진 않았다. 본 논문에서는 협력 필터링 시스템의 고질적인 단점인 확장성 문제를 극복하기 위하여 클러스터링 기법을 채택하였다. 또한 클러스터링을 적용함으로 인해 초래되는 성능저하 문제를 개선하기 위해, 두 가지 전략을 사용하였는데, 첫째는 퍼지 클러스터링이며, 둘째는 영화 장르에 대한 사용자 선호도에 기반한 유사도 측정 방법을 제안하고 이를 적용하였다. 본 연구에서의 제안 방법을 기존의 여러 관련 방법들과 비교 실험을 통해 다양한 주요 성능 척도에 의거하여 평가하였는데, 실험 결과 제안 방법은 예측과 순위 정확도 측면에서 더 우수한 성능을 보였고, 추천 정확도 측면에서는 실험 대상 중 최상의 방법과 대등한 성능을 나타냈다.

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

Subspace Projection-Based Clustering and Temporal ACRs Mining on MapReduce for Direct Marketing Service

  • Lee, Heon Gyu;Choi, Yong Hoon;Jung, Hoon;Shin, Yong Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.317-327
    • /
    • 2015
  • A reliable analysis of consumer preference from a large amount of purchase data acquired in real time and an accurate customer characterization technique are essential for successful direct marketing campaigns. In this study, an optimal segmentation of post office customers in Korea is performed using a subspace projection-based clustering method to generate an accurate customer characterization from a high-dimensional census dataset. Moreover, a traditional temporal mining method is extended to an algorithm using the MapReduce framework for a consumer preference analysis. The experimental results show that it is possible to use parallel mining through a MapReduce-based algorithm and that the execution time of the algorithm is faster than that of a traditional method.

모바일 기기에서 개인화 추천을 위한 실시간 선호도 예측 방법에 대한 연구 (A Study on the Real-Time Preference Prediction for Personalized Recommendation on the Mobile Device)

  • 이학민;엄종석
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.336-343
    • /
    • 2017
  • We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.