• Title/Summary/Keyword: Predictive indicators

Search Result 124, Processing Time 0.027 seconds

Potential Predictive Indicators for Age-Related Loss of Skeletal Muscle Mass in Community-Dwelling Middle-Aged Women

  • Jongseok Hwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.3
    • /
    • pp.47-54
    • /
    • 2024
  • PURPOSE: This study aimed to identify the potential clinically predictive indicators of the age-related loss of skeletal muscle mass (ALSMM) in middle-aged women. METHODS: The data from a cross-sectional study involving 2,066 community-dwelling female participants aged 40 to 49 years were analyzed. Complex sampling analyses were used to ensure a nationally representative analysis, incorporating the individual weights provided by KNHANES. This approach accounted for the stratified, clustered, and multistage probability sampling design of the survey. The participants were screened for ALSMM, and various potential predictive indicators were assessed, including age, height, weight, body mass index, waist circumference, skeletal muscle mass index, smoking and drinking status, systolic and diastolic blood pressure, fasting glucose levels, triglyceride levels, and cholesterol levels. RESULTS: Significant potential predictive indicators for ALSMM included height, weight, body mass index, waist circumference, skeletal muscle mass index, and fasting glucose (p < .05). The systolic blood pressure, diastolic blood pressure, triglyceride levels triglyceride, and drinking and smoking status were found to be non-significant variables (p > .05). CONCLUSION: The study identified the potential predictive indicators for ALSMM among community-dwelling middle-aged women. These findings enhance the current understanding of ALSMM and highlight the potential predictive indicators associated with its development in middle-aged women.

Empirical Analysis of 3 Statistical Models of Hospital Bankruptcy in Korea (병원도산 예측모형의 실증적 비교연구)

  • 이무식;서영준;양동현
    • Health Policy and Management
    • /
    • v.9 no.2
    • /
    • pp.1-20
    • /
    • 1999
  • This study was conducted to investigate the predictors of hospital bankruptcy in Korea and to examine the predictive power for 3 types of statistical models of hospital bankruptcy. Data on 17 financial and 4 non-financial indicators of 30 bankrupt and 30 profitable hospitals in 1. 2, and 3 years before bankruptcy were obtained from the hospital performance databank of Korea Institute of Health Services Management. Significant variables were identified through mean comparison of each indicator between bankrupt and profitable hospitals, and the predictive power of statistical models of hospital bankruptcy were compared. The major findings are as follows. 1. Nine out of 21 indicators - fixed ratio, quick ratio, operating profit to total assets, operating profit to gross revenue, normal profit to total assets,normal profit to gross revenue, net profit to gross revenue, inventories turnrounds, and added value per adjusted patient - were found to be significantly predictitive variables in Logit and Probit models. 2. The predicdtive power of discriminant model of hospital bankruptcy in 1. 2, and 3 years before bankruptcy were 85.4, 79.0, and 83.8% respectively. With regard to the predictive power of the Logit model of hospital bankruptcy, they were 82.3, 75.8, and 80.6% respectively, and of the Probit model. 87.1. 80.6, and 88.7% respectively. 3. The predictive power of the Probit model of hospital bankruptcy is better than the other two predictive models.

  • PDF

Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers (전자건강기록 데이터 기반 욕창 발생 예측모델의 개발 및 평가)

  • Park, Seul Ki;Park, Hyeoun-Ae;Hwang, Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.5
    • /
    • pp.575-585
    • /
    • 2019
  • Purpose: The purpose of this study was to develop predictive models for pressure ulcer incidence using electronic health record (EHR) data and to compare their predictive validity performance indicators with that of the Braden Scale used in the study hospital. Methods: A retrospective case-control study was conducted in a tertiary teaching hospital in Korea. Data of 202 pressure ulcer patients and 14,705 non-pressure ulcer patients admitted between January 2015 and May 2016 were extracted from the EHRs. Three predictive models for pressure ulcer incidence were developed using logistic regression, Cox proportional hazards regression, and decision tree modeling. The predictive validity performance indicators of the three models were compared with those of the Braden Scale. Results: The logistic regression model was most efficient with a high area under the receiver operating characteristics curve (AUC) estimate of 0.97, followed by the decision tree model (AUC 0.95), Cox proportional hazards regression model (AUC 0.95), and the Braden Scale (AUC 0.82). Decreased mobility was the most significant factor in the logistic regression and Cox proportional hazards models, and the endotracheal tube was the most important factor in the decision tree model. Conclusion: Predictive validity performance indicators of the Braden Scale were lower than those of the logistic regression, Cox proportional hazards regression, and decision tree models. The models developed in this study can be used to develop a clinical decision support system that automatically assesses risk for pressure ulcers to aid nurses.

Exploring the Predictive Variables of Government Statistical Indicators on Retail sales Using Machine Learning: Focusing on Pharmacy (머신러닝을 이용한 정부통계지표가 소매업 매출액에 미치는 예측 변인 탐색: 약국을 중심으로)

  • Lee, Gwang-Su
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.125-135
    • /
    • 2022
  • This study aims to explore variables using machine learning and provide analysis techniques suitable for predicting pharmacy sales whether government statistical indicators built to create an industrial ecosystem based on data, network, and artificial intelligence affect pharmacy sales. Therefore, this study explored predictive variables and performance through machine learning techniques such as Random Forest, XGBoost, LightGBM, and CatBoost using analysis data from January 2016 to December 2021 for 28 government statistical indicators and pharmacies in the retail sector. As a result of the analysis, economic sentiment index, economic accompanying index circulation change, and consumer sentiment index, which are economic indicators, were found to be important variables affecting pharmacy sales. As a result of examining the indicators MAE, MSE, and RMSE for regression performance, random forests showed the best performance than XGBoost, LightGBM, and CatBoost. Therefore, this study presented variables and optimal machine learning techniques that affect pharmacy sales based on machine learning results, and proposed several implications and follow-up studies.

A Study on the Usefulness of EVA as Hospital Bankruptcy Prediction Index (병원도산 예측지표로서 EVA의 유용성)

  • 양동현
    • Health Policy and Management
    • /
    • v.12 no.3
    • /
    • pp.54-76
    • /
    • 2002
  • This study investigated how much EVA which evaluate firm's value can explain hospital bankruptcy prediction as a explanatory variable including financial indicators in Korea. In this study, artificial neural network and logit regression which are traditional statistical were used as the model for bankruptcy prediction. Data used in this study were financial and economic value added indicators of 34 bankrupt and -:4 non-bankrupt hospitals from the Database of Korean Health Industry Development Institute. The main results of this study were as follows: First, there was a significant difference between the financial variable model including EVA and the financial variable model excluding EVA in pre-bankruptcy analysis. Second, EVA could forecast bankruptcy hospitals up to 83% by the logistic analysis. Third, the EVA model outperformed the financial model in terms of the predictive power of hospital bankruptcy. Fourth, The predictive power of neural network model of hospital bankruptcy was more powerful than the legit model. After all the result of this study will be useful to future study on EVA to evaluate bankruptcy hospitals forecast.

Predictive Diagnosis and Preventive Maintenance Technologies for Dry Vacuum Pumps (건식 진공펌프의 상태진단 및 예지보수 기법)

  • Cheung, Wan-Sup
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 2015
  • This article introduces fundamentals of self-diagnosis and predictive (or preventive) maintenance technologies for dry vacuum pumps. The state variables of dry pumps are addressed, such as the pump and motor body temperatures, consumption currents of main and booster pumps, mechanical vibration, and exhaust pressure, etc. The adaptive parametric models of the state variables of the dry pump are exploited to provide dramatic reduction of data size and computation time for self-diagnosis. Two indicators, the Hotelling's $T^2$ and the sum of squares residuals (Q), are illustrated to be quite effective and successful in diagnosing dry pumps used in the semiconductor processes.

A LightGBM and XGBoost Learning Method for Postoperative Critical Illness Key Indicators Analysis

  • Lei Han;Yiziting Zhu;Yuwen Chen;Guoqiong Huang;Bin Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2016-2029
    • /
    • 2023
  • Accurate prediction of critical illness is significant for ensuring the lives and health of patients. The selection of indicators affects the real-time capability and accuracy of the prediction for critical illness. However, the diversity and complexity of these indicators make it difficult to find potential connections between them and critical illnesses. For the first time, this study proposes an indicator analysis model to extract key indicators from the preoperative and intraoperative clinical indicators and laboratory results of critical illnesses. In this study, preoperative and intraoperative data of heart failure and respiratory failure are used to verify the model. The proposed model processes the datum and extracts key indicators through four parts. To test the effectiveness of the proposed model, the key indicators are used to predict the two critical illnesses. The classifiers used in the prediction are light gradient boosting machine (LightGBM) and eXtreme Gradient Boosting (XGBoost). The predictive performance using key indicators is better than that using all indicators. In the prediction of heart failure, LightGBM and XGBoost have sensitivities of 0.889 and 0.892, and specificities of 0.939 and 0.937, respectively. For respiratory failure, LightGBM and XGBoost have sensitivities of 0.709 and 0.689, and specificity of 0.936 and 0.940, respectively. The proposed model can effectively analyze the correlation between indicators and postoperative critical illness. The analytical results make it possible to find the key indicators for postoperative critical illnesses. This model is meaningful to assist doctors in extracting key indicators in time and improving the reliability and efficiency of prediction.

Relationship of Somatic Cell Count, Physical, Chemical and Enzymatic Properties to the Bacterial Standard Plate Count in Different Breeds of Dairy Goats

  • Ying, Chingwen;Yang, Cheng-Bin;Hsu, Jih-Tay
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.554-559
    • /
    • 2004
  • The objective of the present study was to investigate the accuracy of mastitis diagnostic indicators for different dairy goat breeds. Biweekly milk samples were collected from individual half mammary gland of seven Saanen and seven Alpine dairy goats in the period of 40 to 120 days in milk. With threshold value set at 2.8 and 3.1 for Alpine and Saanen dairy goats, respectively, log (SPC) offered good sensitivity (0.89, 0.93), specificity (0.88, 0.95), positive predictive value (0.75, 0.85) and negative predictive value (0.95, 0.98) as a mastitis diagnostic tool. The correlations of log (SPC) with milk yield, log (SCC), ALP, LDH, $Na^{+}$, $K^{+}$ and EC were significant in Saanen dairy goats (p<0.05), with the highest correlation coefficient (0.653) existing between log (SPC) and log (SCC). The correlations of log (SPC) with milk yield, milk fat, milk protein, log (SCC), $Na^{+}$, $K^{+}$, EC were significant in Alpine dairy goats (p<0.05), with the highest correlation coefficient (0.416) existing between log (SPC) and log (SCC). There were different best-fit regression equations with different multiple diagnostic indicators for Saanen and Alpine dairy goats. In conclusion, different breeds of dairy goats may have to adapt different mastitis diagnostic parameters for a better diagnosis.

Verification of Cardiac Electrophysiological Features as a Predictive Indicator of Drug-Induced Torsades de pointes (약물의 염전성 부정맥 유발 예측 지표로서 심장의 전기생리학적 특징 값들의 검증)

  • Yoo, Yedam;Jeong, Da Un;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.19-26
    • /
    • 2022
  • The Comprehensive in vitro Proarrhythmic Assay(CiPA) project was launched for solving the hERG assay problem of being classified as high-risk groups even though they are low-risk drugs due to their high sensitivity. CiPA presented a protocol to predict drug toxicity using physiological data calculated based on the in-silico model. in this study, features calculated through the in-silico model are analyzed for correlation of changing action potential in the near future, and features are verified through predictive performance according to drug datasets. Using the O'Hara Rudy model modified by Dutta et al., Pearson correlation analysis was performed between 13 features(dVm/dtmax, APpeak, APresting, APD90, APD50, APDtri, Capeak, Caresting, CaD90, CaD50, CaDtri, qNet, qInward) calculated at 100 pacing, and between dVm/dtmax_repol calculated at 1,000 pacing, and linear regression analysis was performed on each of the 12 training drugs, 16 verification drugs, and 28 drugs. Indicators showing high coefficient of determination(R2) in the training drug dataset were qNet 0.93, AP resting 0.83, APDtri 0.78, Ca resting 0.76, dVm/dtmax 0.63, and APD90 0.61. The indicators showing high determinants in the validated drug dataset were APDtri 0.94, APD90 0.92, APD50 0.85, CaD50 0.84, qNet 0.76, and CaD90 0.64. Indicators with high coefficients of determination for all 28 drugs are qNet 0.78, APD90 0.74, and qInward 0.59. The indicators vary in predictive performance depending on the drug dataset, and qNet showed the same high performance of 0.7 or more on the training drug dataset, the verified drug dataset, and the entire drug dataset.

Using noise filtering and sufficient dimension reduction method on unstructured economic data (노이즈 필터링과 충분차원축소를 이용한 비정형 경제 데이터 활용에 대한 연구)

  • Jae Keun Yoo;Yujin Park;Beomseok Seo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.119-138
    • /
    • 2024
  • Text indicators are increasingly valuable in economic forecasting, but are often hindered by noise and high dimensionality. This study aims to explore post-processing techniques, specifically noise filtering and dimensionality reduction, to normalize text indicators and enhance their utility through empirical analysis. Predictive target variables for the empirical analysis include monthly leading index cyclical variations, BSI (business survey index) All industry sales performance, BSI All industry sales outlook, as well as quarterly real GDP SA (seasonally adjusted) growth rate and real GDP YoY (year-on-year) growth rate. This study explores the Hodrick and Prescott filter, which is widely used in econometrics for noise filtering, and employs sufficient dimension reduction, a nonparametric dimensionality reduction methodology, in conjunction with unstructured text data. The analysis results reveal that noise filtering of text indicators significantly improves predictive accuracy for both monthly and quarterly variables, particularly when the dataset is large. Moreover, this study demonstrated that applying dimensionality reduction further enhances predictive performance. These findings imply that post-processing techniques, such as noise filtering and dimensionality reduction, are crucial for enhancing the utility of text indicators and can contribute to improving the accuracy of economic forecasts.