This study examined the characteristics of the relationship of HOME, sociodemographic variables and children's verbal ability at age four, five, six, Expecially this study investigated causal relationships amoong the variables which are supposed to affect children's verbal ability by children's age and sex. The subject of this study were 180 children and their mothers. Instruments included inventory of home stimulation(HOME), inventory of socio-demographic variables, inventory of the children's verbla ability. The results obtained from this study were as follows : 1. For the most part, HOME and socio-demographic variables had a significant positive correlation with children's verbal ability. 2. The variables that significantly predicted children's verbal ability differed according to children's age and sex. That is, play materials, breadth of experience and economic status of the home were predictive of boy's verbal ability at age four, while aspects of physical environment, breadth of experience were predictive at age five, fostering maturity and independence, parent's education were predictive at age six. And developmental stimulation and breadth of experience were predictive of girl's verbal ability at age four, while developmental stimulation, economic status of the home were predictive at age five, developmental stimulation and play materials were predictive at age six. 3. the results of the analysis of the causal model showed that the kind of variables that affected children's verbal ability directly differed according to children's age and sex. That is, indirect stimulation and direct stimulation affected boy's verbal ability directly at age four and five, while indirect stimulation and parent's education affected boy's verbal ability at age six. And indirect stimulation, direct stimulation, emotional climate of the home affected girl's verbal ability directly at age four, while direct stimulation, economic status of the home, indirect stimulation affected directly at age five, parent's education, indirect stimulation and direct stimulation affected girl's verbal ability at age six. 4. Another causal model of the HOME, socio-demographic variables affecting children's verbal ability showed that total HOME scores more significantly affected boys and girl's verbal ability directly than socio-demographic variables at all ages.
This research aims to compare between regression and neural network in terms of the predictive ability of the overhead costs in hospitals. For this purpose, this research uses the number of out-patients and complex medical treatments as explaining variables. Thirty-one hospitals were used for the empirical test The test result shows that the regression model has a more predictive ability than the neural network.
Communications for Statistical Applications and Methods
/
제6권2호
/
pp.383-395
/
1999
This study is concerned with the evaluation of predictive ability of classification models with ordered multiple categories. If categories can be ordered or ranked the spread of misclassification should be considered to evaluate the performance of the classification models using loss rate since the apparent error rate can not measure the spread of misclassification. Since loss rate is known to underestimate the true loss rate the bootstrap method were used to estimate the true loss rate. thus this study suggests the method to evaluate the predictive power of the classification models using loss rate and the bootstrap estimate of the true loss rate.
Communications for Statistical Applications and Methods
/
제23권4호
/
pp.343-353
/
2016
In doubly-censored data, an originating event time and a terminating event time are interval-censored. In certain analyses of such data, a researcher might be interested in the elapsed time between the originating and terminating events as well as regression modeling with risk factors. Therefore, in this study, we introduce a model evaluation method to measure the predictive ability of a model based on negative predictive values. We use a semiparametric estimate of the predictive accuracy to provide a simple and flexible method for model evaluation of doubly-censored survival outcomes. Additionally, we used simulation studies and tested data from a prostate cancer trial to illustrate the practical advantages of our approach. We believe that this method could be widely used to build prediction models or nomograms.
This study examined the characteristics of the relationship of home environment variables and children's intellectual ability. Two studies were conducted: Study I examined the predictability of home environment variables for children's intellectual ability by children's age and the correlations between environment variables and children's intellectual ability. Study II investigated causal relationships among the variables which are supposed to affect children's intellectual ability. The subjects of this study were 240 children at age four, six and eight attending nursery schools, kindergartens and elementary schools and their mothers. Instruments included the Inventory of Home Stimulation (HOME), inventory of sociodemographic variables, and the K-Binet scale. The results obtained from this study were as follows: 1) Home environment variables had a significant positive correlation (.36 ~ .78) with children's intellectual ability. 2) The home environmental variables that significantly predicted children's intellectual ability differed according to children's age. That is, play materials, breadth of experience, and quality of language environment were predictive of children's intellectual ability at age four, while parent's education, developmental stimulation, and play materials were predictive at age six. Economic status of the home, need gratification, avoidance of restriction, and emotional climate were predictive at age eight. 3) The causal model of home environment affecting children's intellectual ability was formulated by exogenous variables (parent education and economic status of the home) and by endogenous variables (direct stimulation, indirect stimulation and the emotional climate of the home). 4) The results of the analysis of the causal model showed that the kind of variables that affected children's intellectual ability directly differed according to children's age. That is, direct stimulation and parent's education affected children's intellectual ability directly at age four and six, while the economic status of the home and indirect stimulation affected intellectual ability directly at age eight. The amount of variance that explained children's intellectual ability increased with increase in children's age.
Predictive 필터는 Kalman 필터의 단점을 보완하고 모델 오차를 동시에 추정할수 있는 최근에 제시된 기법이다. 한 단계 앞의 추정 오차를 최소화하기 위한 최적화된 필터의 형태가 Predictive 필터이다. 본 필터의 주요 장점은 상태변수와 함께 모델오차를 파악할 수 있다는데 있다. 본 연구에서는 Predictive 필터를 이용한 인공위성의 자세추정 내용을 소개하도록 한다. 기존에 제시된 Predictive 필터 이론을 적용하여 자이로 바이어스 신호를 추정할수 있는 수식을 유도하고 또한 벡터 관측 정보를 이용한 자세추정 결과를 소개하도록 한다. 본 연구결과를 통해 향후 Predictive 필터의 확장 가능성을 예상할 수 있다.
본 연구는 Barth 외(2001)가 개발한 모형을 이용하여, 표본 내 예측과 표본 외 예측 상황에서의 발생액 및 발생액 구성요소들의 미래 현금흐름 예측력을 검토하는 것을 목적으로 한다. 이를 위해 우리나라의 유가증권 시장 과 코스닥 시장에 상장된 762개 기업의 1994년부터 2007년까지 14년간의 자료를 이용하여 발생액 및 발생액 구성요소의 미래현금 예측력을 검정하였다. 검정 결과 표본 내 예측력 검정에서는 Barth 외(2001)와 유사한 결과가 얻어졌다. 즉, 발생액을 여섯 가지의 구성요소로 추가로 분해한 모형의 표본 내 예측력이 비교 대상이 된 다른 세 가지 모형(회계이익 모형, 현금흐름 모형, 영업현금흐름 및 총발생액 모형)에 비해 우수하였으며, 여러 상황에서 무형자산 및 이연자산을 제외한 나머지 다섯 가지의 발생액 구성요소는 미래 현금흐름의 예측에 관하여 추가적인 정보 내용을 포함하는 것으로 밝혀졌다. 표본 외 예측에서는 상반되는 결과가 얻어졌다. 표본 외 예측력이 가장 뛰어난 모형은 영업현금흐름만을 독립변수로 포함하는 모형이었으며, Barth 외(2001)의 발생액 분해모형은 비교 대상인 네 가지의 모형 중 예측력이 가장 낮았다. 산업별 및 연도별로 수행된 추가 분석에서도 전반적으로 결과의 강건성을 확인할 수 있었다. 따라서 발생액과 발생액 구성요소가 미래 현금흐름의 예측에 유용한 정보를 전달한다는 Barth 외(2001)의 주장은 표본 외 예측에서는 성립한다고 할 수 없다. 이러한 결과는 미국 자료를 이용한 Lev 외(2005)의 결과와 일치하며, 미국과 한국의 회계기준 제정기관의 입장과 상반된다.
Communications for Statistical Applications and Methods
/
제23권4호
/
pp.355-362
/
2016
Ensemble methods often help increase prediction ability in various predictive models by combining multiple weak learners and reducing the variability of the final predictive model. In this work, we demonstrate that ensemble methods also enhance the accuracy of prediction under kernel ridge regression and kernel logistic regression classification. Here we apply bagging and random forests to two kernel-based predictive models; and present the procedure of how bagging and random forests can be embedded in kernel-based predictive models. Our proposals are tested under numerous synthetic and real datasets; subsequently, they are compared with plain kernel-based predictive models and their subsampling approach. Numerical studies demonstrate that ensemble approach outperforms plain kernel-based predictive models.
Background: This study aims to develop a "Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions" for the National Health Insurance Service to enhance administrative efficiency in protecting and collecting contributions from livelihood-type defaulters. Additionally, it aims to establish customized collection management strategies based on individuals' ability to pay health insurance contributions. Methods: Firstly, to develop the "Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions," a series of processes including (1) analysis of defaulter characteristics, (2) model estimation and performance evaluation, and (3) model derivation will be conducted. Secondly, using the predictions from the model, individuals will be categorized into four types based on their payment ability and livelihood status, and collection strategies will be provided for each type. Results: Firstly, the regression equation of the prediction model is as follows: phat = exp (0.4729 + 0.0392 × gender + 0.00894 × age + 0.000563 × total income - 0.2849 × low-income type enrollee - 0.2271 × delinquency frequency + 0.9714 × delinquency action + 0.0851 × reduction) / [1 + exp (0.4729 + 0.0392 × gender + 0.00894 × age + 0.000563 × total income - 0.2849 × low-income type enrollee - 0.2271 × delinquency frequency + 0.9714 × delinquency action + 0.0851 × reduction)]. The prediction performance is an accuracy of 86.0%, sensitivity of 87.0%, and specificity of 84.8%. Secondly, individuals were categorized into four types based on livelihood status and payment ability. Particularly, the "support needed group," which comprises those with low payment ability and low-income type enrollee, suggests enhancing contribution relief and support policies. On the other hand, the "high-risk group," which comprises those without livelihood type and low payment ability, suggests implementing stricter default handling to improve collection rates. Conclusion: Upon examining the regression equation of the prediction model, it is evident that individuals with lower income levels and a history of past defaults have a lower probability of payment. This implies that defaults occur among those without the ability to bear the burden of health insurance contributions, leading to long-term defaults. Social insurance operates on the principles of mandatory participation and burden based on the ability to pay. Therefore, it is necessary to develop policies that consider individuals' ability to pay, such as transitioning livelihood-type defaulters to medical assistance or reducing insurance contribution burdens.
Categorization is an important human function used to process different stimuli. It is also one of the most important factors affecting measurement of a person's classification ability. Explicit categorization, the representative system by which categorization ability is measured, can verbally describe the categorization rule. The purpose of this study was to develop a prediction model for categorization ability as it relates to the classification process of living organisms using fMRI. Fifty-five participants were divided into two groups: a model generation group, comprised of twenty-seven subjects, and a model verification group, made up of twenty-eight subjects. During prediction model generation, functional connectivity was used to analyze temporal correlations between brain activation regions. A classification ability quotient (CQ) was calculated to identify the verbal categorization ability distribution of each subject. Additionally, the connectivity coefficient (CC) was calculated to quantify the functional connectivity for each subject. Hence, it was possible to generate a prediction model through regression analysis based on participants' CQ and CC values. The resultant categorization ability regression model predictor was statistically significant; however, researchers proceeded to verify its predictive ability power. In order to verify the predictive power of the developed regression model, researchers used the regression model and subjects' CC values to predict CQ values for twenty-eight subjects. Correlation between the predicted CQ values and the observed CQ values was confirmed. Results of this study suggested that explicit categorization ability differs at the brain network level of individuals. Also, the finding suggested that differences in functional connectivity between individuals reflect differences in categorization ability. Last, researchers have provided a new method for predicting an individual's categorization ability by measuring brain activation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.