• Title/Summary/Keyword: Predictive Reduction Model

Search Result 66, Processing Time 0.024 seconds

Evaluation of a Traffic Noise Predictive Model for an Active Noise Cancellation (ANC) System (능동형 소음저감 기법을 위한 도로교통소음 예측 모형 평가 연구)

  • An, Deok Soon;Mun, Sung Ho;An, Oh Seong;Kim, Do Wan
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES : The purpose of this thesis is to evaluate the effectiveness of an active noise cancellation (ANC) system in reducing the traffic noise level against frequencies from the predictive model developed by previous research. The predictive model is based on ISO 9613-2 standards using the Noble close proximity (NCPX) method and the pass-by method. This means that the use of these standards is a powerful tool for analyzing the traffic noise level because of the strengths of these methods. Traffic noise analysis was performed based on digital signal processing (DSP) for detecting traffic noise with the pass-by method at the test site. METHODS : There are several analysis methods, which are generally divided into three different types, available to evaluate traffic noise predictive models. The first method uses the classification standard of 12 vehicle types. The second method is based on a standard of four vehicle types. The third method is founded on 5 types of vehicles, which are different from the types used by the second method. This means that the second method not only consolidates 12 vehicle types into only four types, but also that the results of the noise analysis of the total traffic volume are reflected in a comparison analysis of the three types of methods. The constant percent bandwidth (CPB) analysis was used to identify the properties of different frequencies in the frequency analysis. A-weighting was applied to the DSP and to the transformation process from analog to digital signal. The root mean squared error (RMSE) was applied to compare and evaluate the predictive model results of the three analysis methods. RESULTS : The result derived from the third method, based on the classification standard of 5 vehicle types, shows the smallest values of RMSE and max and min error. However, it does not have the reduction properties of a predictive model. To evaluate the predictive model of an ANC system, a reduction analysis of the total sound pressure level (TSPL), dB(A), was conducted. As a result, the analysis based on the third method has the smallest value of RMSE and max error. The effect of traffic noise reduction was the greatest value of the types of analysis in this research. CONCLUSIONS : From the results of the error analysis, the application method for categorizing vehicle types related to the 12-vehicle classification based on previous research is appropriate to the ANC system. However, the performance of a predictive model on an ANC system is up to a value of traffic noise reduction. By the same token, the most appropriate method that influences the maximum reduction effect is found in the third method of traffic analysis. This method has a value of traffic noise reduction of 31.28 dB(A). In conclusion, research for detecting the friction noise between a tire and the road surface for the 12 vehicle types needs to be conducted to authentically demonstrate an ANC system in the Republic of Korea.

An Improved Predictive Control of an Induction Machine fed by a Matrix Converter for Torque Ripple Reduction (토크 리플 저감을 위한 매트릭스 컨버터 구동 유도 전동기의 향상된 예측 제어 기법)

  • Lee, Eunsil;Choi, Woo Jin;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.662-668
    • /
    • 2015
  • This paper presents an improved predictive control of an induction machine fed by a matrix converter using N-switching vectors as the control action during a complete sampling period of the controller. The conventional model predictive control scheme based matrix converter uses a single switching vector over the same period which introduces high torque ripple. The proposed switching scheme for a matrix converter based model predictive control of an induction machine drive selects the appropriate switching vectors for control of electromagnetic torque with small variations of the stator flux. The proposed method can reduce the ripple of the electrical variables by selecting the switching state as well as the method used in the space vector modulation techniques. Simulation results are presented to verify the effectiveness of the improved predictive control strategy for induction machine fed by a matrix converter.

Indoor Temperature Control of a Heat Pump Based on Model Predictive Control Considering Energy Efficiency (에너지효율을 고려한 모델예측제어에 기초한 열펌프의 실내온도 제어)

  • 조항철;변경석;송재복;장효환;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.200-208
    • /
    • 2001
  • In indoor temperature control of a heat pump, a reduction in energy consumption is very important. However, most control schemes for heat pumps have focused only on control performance such s settling time and steady-state error. In this paper, the model predictive control (MPC) which includes the energy-related variable in this cost function is proposed. By computing the control signal minimizing this cost function, the trade-off between energy reduction and temperature control performance can be obtained. Since the MPC required the process model, the dynamic mode of a heat pump is also obtained by the system identification technique. Performance of the proposed MPC considering energy efficiency is compared with the two other control schemes. It si shown that the proposed scheme can consume less energy thant hte others in achieving similar control performance.

  • PDF

Design of Robust Reduced-Order Model Predictive Control using Singular Value Decomposition of Pulse Response Circulant Matrix (펄스응답 순환행렬의 특이치 분해를 이용한 강인한 차수감소 모델예측제어기의 설계)

  • 김상훈;문혜진;이광순
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.413-419
    • /
    • 1998
  • A novel order-reduction technique for model predictive control(MPC) is proposed based on the singular value decomposition(SVD) of a pulse response circulant matrix(PRCM) of a concerned system. It is first investigated that the PRCM (in the limit) contains a complete information of the frequency response of a system and its SVD decomposes the information into the respective principal directions at each frequency. This enables us to isolate the significant modes of the system and to devise the proposed order-reduction technique. Though the primary purpose of the proposed technique is to diminish the required computation in MPC, the clear frequency decomposition of the SVD of the PRCM also enables us to improve the robustness through selective excitation of frequency modes. Performance of the proposed technique is illustrated through two numerical examples.

  • PDF

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

A Predictive Model of Depression in Rural Elders-Decision Tree Analysis (의사결정나무 분석기법을 이용한 농촌거주 노인의 우울예측모형 구축)

  • Kim, Seong Eun;Kim, Sun Ah
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.3
    • /
    • pp.442-451
    • /
    • 2013
  • Purpose: This descriptive study was done to develop a predictive model of depression in rural elders that will guide prevention and reduction of depression in elders. Methods: A cross-sectional descriptive survey was done using face-to-face private interviews. Participants included in the final analysis were 461 elders (aged${\geq}$ 65 years). The questions were on depression, personal and environmental factors, body functions and structures, activity and participation. Decision tree analysis using the SPSS Modeler 14.1 program was applied to build an optimum and significant predictive model to predict depression in rural elders. Results: From the data analysis, the predictive model for factors related to depression in rural elders presented with 4 pathways. Predictive factors included exercise capacity, self-esteem, farming, social activity, cognitive function, and gender. The accuracy of the model was 83.7%, error rate 16.3%, sensitivity 63.3%, and specificity 93.6%. Conclusion: The results of this study can be used as a theoretical basis for developing a systematic knowledge system for nursing and for developing a protocol that prevents depression in elders living in rural areas, thereby contributing to advanced depression prevention for elders.

Research on Model to Diagnose Efficiency Reduction of Inverters using Multilayer Perceptron (다층 퍼셉트론을 이용한 인버터의 효율 감소 진단 모델에 관한 연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1448-1456
    • /
    • 2022
  • This paper studies a model to diagnose efficiency reduction of inverter using Multilayer Perceptron(MLP). In this study, two inverter data which started operation at different day was used. A Multilayer Perceptron model was made to predict photovoltaic power data of the latest inverter. As a result of the model's performance test, the Mean Absolute Percentage Error(MAPE) was 4.1034. The verified model was applied to one-year-old and two-year-old data after old inverter starting operation. The predictive power of one-year-old inverter was larger than the observed power by 724.9243 on average. And two-year-old inverter's predictive value was larger than the observed power by 836.4616 on average. The prediction error of two-year-old inverter rose 111.5572 on a year. This error is 0.4% of the total capacity. It was proved that the error is meaningful difference by t-test. The error is predicted value minus actual value. Which means that PV system actually generated less than prediction. Therefore, increasing error is decreasing conversion efficiency of inverter. Finally, conversion efficiency of the inverter decreased by 0.4% over a year using this model.

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

Predictive Equations of Ground Motions in Korea

  • Noh, Myung-Hyun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • Predictive equations of ground motions are one of the most important factors in the seismic hazard analysis. Unfortunately, studies on predictive equations of ground motions in Korea had been hampered due to the lack of seismic data. To overcome the lack of data, seismologists adopted the stochastic method based on the seismological model. Korean predictive equations developed by the stochastic method show large differences in their predictions. It was turned out through the analysis of the existing studies that the main sources of the differences are the uncertainties in the (Brune) stress drop and spectral decay rate . Therefore, it is necessary to focus the future research on the reduction of the uncertainties in the two parameters.

  • PDF

Model Predictive Control for Induction Motor Drives Fed by a Matrix Converter (매트릭스 컨버터로 구동되는 유도전동기의 직접토크제어를 위한 모델예측제어 기반의 SVM 기법)

  • Choi, Woo Jin;Lee, Eunsil;Song, Joong-Ho;Lee, Young-Il;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.900-907
    • /
    • 2014
  • This paper proposes a MPC (Model Predictive Control) method for the torque and flux controls of induction motor. The proposed MPC method selects the optimized voltage vector for the matrix converter control using the predictive modeling equation of the induction motor and cost function. Hence, the reference voltage vector that minimizes the cost function of the torque and flux error within the control period is selected and applied to the actual system. As a result, it is possible to perform the torque and flux control of induction motor using only the MPC controller without a PI (Proportional-Integral) or hysteresis controller. Even though the proposed control algorithm is more complicated and has lots of computations compared with the conventional MPC, it can perform torque ripple reduction by synthesizing voltage vectors of various magnitude. This feature provides the reduction of amount of calculations and the improvement of the control performance through the adjustment of the number of the unit vectors n. The proposed control method is validated through the PSIM simulation.