• Title/Summary/Keyword: Predictive Information

Search Result 1,210, Processing Time 0.03 seconds

Adaptive Prediction for Lossless Image Compression

  • Park, Sang-Ho
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • Genetic algorithm based predictor for lossless image compression is propsed. We describe a genetic algorithm to learn predictive model for lossless image compression. The error image can be further compressed using entropy coding such as Huffman coding or arithmetic coding. We show that the proposed algorithm can be feasible to lossless image compression algorithm.

  • PDF

An Improved Estimator of PPV from the Screening Test

  • Park, Sang-Gue;Choi, Ji-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.419-428
    • /
    • 2005
  • The screening test is increasingly being used for predicting future disease in the person screened and has raised concerns about reliability of the result of its procedure. We propose an improved estimator of the confidence interval for the positive predictive value(PPV) in screening test by simply taking inverse sinh transformation comparing to Gastwirth(1987) estimator and show its efficiency through the simulation study.

  • PDF

Model Predictive Tracking Control of Wheeled Mobile Robots (모델 예측 추적을 이용한 이동 로봇의 경로 추적)

  • Gao, Yu;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.263-264
    • /
    • 2007
  • This paper presents a model predictive controller for tracking control of the wheeled mobile robots (WMRs) subject to nonholonomic constraint. The input-output feedback-linearization method and the mode transformation are used. The performance of the proposed control algorithm is verified via computer simulation. It is shown that the control strategy is feasible.

  • PDF

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Design of Robust Reduced-Order Model Predictive Control using Singular Value Decomposition of Pulse Response Circulant Matrix (펄스응답 순환행렬의 특이치 분해를 이용한 강인한 차수감소 모델예측제어기의 설계)

  • 김상훈;문혜진;이광순
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.413-419
    • /
    • 1998
  • A novel order-reduction technique for model predictive control(MPC) is proposed based on the singular value decomposition(SVD) of a pulse response circulant matrix(PRCM) of a concerned system. It is first investigated that the PRCM (in the limit) contains a complete information of the frequency response of a system and its SVD decomposes the information into the respective principal directions at each frequency. This enables us to isolate the significant modes of the system and to devise the proposed order-reduction technique. Though the primary purpose of the proposed technique is to diminish the required computation in MPC, the clear frequency decomposition of the SVD of the PRCM also enables us to improve the robustness through selective excitation of frequency modes. Performance of the proposed technique is illustrated through two numerical examples.

  • PDF

Recognition of Noise Quantity by Neural Network using Linear Predictive Coefficient (선형예측계수를 사용한 신경회로망에 의한 잡음량의 인식)

  • Choi, Jae-Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.379-382
    • /
    • 2008
  • In order to reduce the noise quantity in a conversation under the noisy environment, it is necessary for the signal processing system to process adaptively according to the noise quantity in order to enhance the performance. There fore this paper presents a recognition method for noise quantity by linear predictive coefficient using a three layered neural network, which is trained using three kinds of speech that is degraded by various background noises. In the experiment, the average values of the recognition results were 97.6% or more for various noises using Aurora2 database.

  • PDF

An Improved Predictive Dynamic Power Management Scheme for Embedded Systems (임베디드 시스템을 위한 개선된 예측 동적 전력 관리 방법)

  • Kim, Sang-Woo;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.641-647
    • /
    • 2009
  • This paper proposes an improved predictive dynamic power management (DPM) scheme and a task scheduling algorithm to reduce unnecessary power consumption in embedded systems. The proposed algorithm performs pre-scheduling to minimize unnecessary power consumption. The proposed predictive DPM utilizes a scheduling library provided by the system to reduce computation overhead. Experimental results show that the proposed algorithm can reduce power consumption by 22.3% on the average comparing with the LLF algorithm for DPM-enable system scheduling.

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

Generalized Predictive Control of Chaotic Systems Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 일반형 예측 제어)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.421-424
    • /
    • 2003
  • This paper proposes the generalized predictive control(GPC) method of chaotic systems using a self-recurrent wavelet neural network(SRWNN). The reposed SRWNN, a modified model of a wavelet neural network(WNN), has the attractive ability such as dynamic attractor, information storage for later use. Unlike a WNN, since the SRWNN has the mother wavelet layer which is composed of self-feedback neurons, mother wavelet nodes of the SRWNN can store the past information of the network. Thus the SRWNN can be used as a good tool for predicting the dynamic property of nonlinear dynamic systems. In our method, the gradient-descent(GD) method is used to train the SRWNN structure. Finally, the effectiveness and feasibility of the SRWNN based GPC is demonstrated with applications to a chaotic system.

  • PDF

High Performance Current Controller for Sparse Matrix Converter Based on Model Predictive Control

  • Lee, Eunsil;Lee, Kyo-Beum;Lee, Young Il;Song, Joong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1138-1145
    • /
    • 2013
  • A novel predictive current control strategy for a sparse matrix converter is presented. The sparse matrix converter is functionally-equivalent to the direct matrix converter but has a reduced number of switches. The predictive current control uses a model of the system to predict the future value of the load current and generates the reference voltage vector that minimizes a given cost function so that space vector modulation is achieved. The results show that the proposed controller for sparse matrix converters controls the load current very effectively and performs very well through simulation and experimental results.