• Title/Summary/Keyword: Prediction-Based

Search Result 10,069, Processing Time 0.039 seconds

Adaptive Coefficient Scanning Based on the Intra Prediction Mode

  • Choi, Byeong-Doo;Kim, Jin-Hyung;Ko, Sung-Jea
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.694-696
    • /
    • 2007
  • This letter presents an adaptive coefficient scanning method for intra mode coding in H.264. The proposed adaptive scanning uses six alternative scanning orders based on the intra prediction mode. Experimental results show that the proposed method improves the coding efficiency up to 3% compared to conventional scanning methods without additional computations.

  • PDF

Improved Algorithm for User Based Recommender System

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.717-726
    • /
    • 2006
  • This study is to investigate the MAE of prediction value by collaborative filtering algorithm originated by GroupLens and improved algorithm. To decrease the MAE on the collaborative recommender system on user based, this research proposes the improved algorithm, which reduces the possibility of over estimation of active user's preference mean collaboratively using other user’s preference mean. The result shows the MAE of prediction by improved algorithm is better than original algorithm, so the active user's preference mean used in prediction formula is possibly over estimated.

  • PDF

HEVC Coding Unit Mode Based Motion Frame Analysis

  • Jia, Qiong;Dong, Tianyu;Jang, Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.52-54
    • /
    • 2021
  • In this paper we propose a method predict whether a video frame contains motion according to the invoking situation of the coding unit mode in HEVC. The motion prediction of video frames is conducive for use in video compression and video data extraction. In the existing technology, motion prediction is usually performed by high complexity computer vision technology. However, we proposed to analyze the motion frame based on HEVC coding unit mode which does not need to use the static background frame. And the prediction accuracy rate of motion frame analysis by our method has exceeded 80%.

  • PDF

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

Learning Time Prediction Model for Web-based Instruction (웹 기반 학습을 위한 학습 시간 예측 모델)

  • 김창화;장기영
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.983-991
    • /
    • 2003
  • The Web-based instruction on the internet provides lots of learners with the related information and knowledge beyond time and space. But in the Web-based instruction, there is a problem that the teaming process statuses for learners can be known only through an exam. This paper introduces a web monitoring method to check whether the learner has some problems in learning process and to be able to find out the students with the problems. In the method this paper proposes a learning time prediction model for predicting the proper next study time intervals based on the learner`s learning times and grades on Previous learning units. This method provides the educator with the learning Process statuses for learners. The Loaming prediction model for web-based monitoring can be used to stimulate learners to take the good teaming processes by sending automatically alerting messages if their real teaming times exceeds on his predicted learning time interval. The results of the estimation through case study on the web-based monitoring to use the teaming time prediction model show that most of on-line learners with Poor teaming process statuses get poor grades. In addition, the results show that learner`s poor habits keep going on without change.

Link Prediction in Bipartite Network Using Composite Similarities

  • Bijay Gaudel;Deepanjal Shrestha;Niosh Basnet;Neesha Rajkarnikar;Seung Ryul Jeong;Donghai Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2030-2052
    • /
    • 2023
  • Analysis of a bipartite (two-mode) network is a significant research area to understand the formation of social communities, economic systems, drug side effect topology, etc. in complex information systems. Most of the previous works talk about a projection-based model or latent feature model, which predicts the link based on singular similarity. The projection-based models suffer from the loss of structural information in the projected network and the latent feature is hardly present. This work proposes a novel method for link prediction in the bipartite network based on an ensemble of composite similarities, overcoming the issues of model-based and latent feature models. The proposed method analyzes the structure, neighborhood nodes as well as latent attributes between the nodes to predict the link in the network. To illustrate the proposed method, experiments are performed with five real-world data sets and compared with various state-of-art link prediction methods and it is inferred that this method outperforms with ~3% to ~9% higher using area under the precision-recall curve (AUC-PR) measure. This work holds great significance in the study of biological networks, e-commerce networks, complex web-based systems, networks of drug binding, enzyme protein, and other related networks in understanding the formation of such complex networks. Further, this study helps in link prediction and its usability for different purposes ranging from building intelligent systems to providing services in big data and web-based systems.

Preliminary Study of Deep Learning-based Precipitation

  • Kim, Hee-Un;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • Recently, data analysis research has been carried out using the deep learning technique in various fields such as image interpretation and/or classification. Various types of algorithms are being developed for many applications. In this paper, we propose a precipitation prediction algorithm based on deep learning with high accuracy in order to take care of the possible severe damage caused by climate change. Since the geographical and seasonal characteristics of Korea are clearly distinct, the meteorological factors have repetitive patterns in a time series. Since the LSTM (Long Short-Term Memory) is a powerful algorithm for consecutive data, it was used to predict precipitation in this study. For the numerical test, we calculated the PWV (Precipitable Water Vapor) based on the tropospheric delay of the GNSS (Global Navigation Satellite System) signals, and then applied the deep learning technique to the precipitation prediction. The GNSS data was processed by scientific software with the troposphere model of Saastamoinen and the Niell mapping function. The RMSE (Root Mean Squared Error) of the precipitation prediction based on LSTM performs better than that of ANN (Artificial Neural Network). By adding GNSS-based PWV as a feature, the over-fitting that is a latent problem of deep learning was prevented considerably as discussed in this study.

Two Machine Learning Models for Mobile Phone Battery Discharge Rate Prediction Based on Usage Patterns

  • Chantrapornchai, Chantana;Nusawat, Paingruthai
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.436-454
    • /
    • 2016
  • This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.

An Ensemble Model for Machine Failure Prediction (앙상블 모델 기반의 기계 고장 예측 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.