• Title/Summary/Keyword: Prediction of variables

Search Result 1,817, Processing Time 0.026 seconds

Application of ANFIS for Prediction of Daily Water Supply (상수도 1일 급수량 예측을 위한 ANFIS적용)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.281-290
    • /
    • 2000
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. ANFIS, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an application of network-based fuzzy inference system(ANFIS) for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water which supplied in Kwangju city. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supply, (b) the mean temperature, and (c) the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.46% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

Predicting the Subsequent Childbirth Intention of Married Women with One Child to Solve the Low Birth Rate Problem in Korea: Application of a Machine Learning Method (저출생 문제해결을 위한 한자녀 기혼여성의 후속 출산의향 예측: 머신러닝 방법의 적용)

  • Hyo Jeong Jeon
    • Korean Journal of Childcare and Education
    • /
    • v.20 no.2
    • /
    • pp.127-143
    • /
    • 2024
  • Objective: The purpose of this study is to develop a machine learning model to predict the subsequent childbirth intention of married women with one child, aiming to address the low birth rate problem in Korea, This will be achieved by utilizing data from the 2021 Family and Childbirth Survey conducted by the Korea Institute for Health and Social Affairs. Methods: A prediction model was developed using the Random Forest algorithm to predict the subsequent childbirth intention of married women with one child. This algorithm was chosen for its advantages in prediction and generalization, and its performance was evaluated. Results: The significance of variables influencing the Random Forest prediction model was confirmed. With the exception of the presence or absence of leave before and after childbirth, most variables contributed to predicting the intention to have subsequent childbirth. Notably, variables such as the mother's age, number of children planned at the time of marriage, average monthly household income, spouse's share of childcare burden, mother's weekday housework hours, and presence or absence of spouse's maternity leave emerged as relatively important predictors of subsequent childbirth intention.

A Comparative Analysis of Risk Assessment Models for Asbestos Demolition (석면 해체 작업의 위험성평가모델 비교 분석)

  • Kim, Dong-Gyu;Kim, Min-Seung;Lee, Su-Min;Kim, Yu-Jin;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.99-100
    • /
    • 2022
  • As the danger of exposure to the asbestos has been revealed, the importance of demolition asbestos in existing buildings has been raised. Extensive body of study has been conducted to evaluate the risk of demolition asbestos, but there were confined types of variables caused by not reflecting categorical information and limitations in collecting quantitative information. Thus, this study aims to derive a model that predicts the risk in workplace of demolition asbestos by collecting categorical and continuous variables. For this purpose, categorical and continuous variables were collected from asbestos demolition reports, and the risk assessment score was set as the dependent variable. In this study, the influence of each variable was identified using logistic regression, and the risk prediction model methodologies were compared through decision tree regression and artificial neural network. As a result, a conditional risk prediction model was derived to evaluate the risk of demolition asbestos, and this model is expected to be used to ensure the safety of asbestos demolition workers.

  • PDF

A Prediction Method Combining Clustering Method and Stepwise Regression (군집분석 기법과 단계별 회귀모델을 결합한 예측 방법)

  • Chong Il-gyo;Jun Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.949-952
    • /
    • 2002
  • A regression model is used in predicting the response variable given predictor variables However, in case of large number of predictor variables, a regression model has some problems such as multicollinearity, interpretation of the functional relationship between the response and predictors and prediction accuracy. A clustering method and stepwise regression could be used to reduce the amount of data by grouping predictors having similar properties and by selecting the subset of predictors. respectively. This paper proposes a prediction method combining clustering method and stepwise regression. The proposed method fits a global model and local models and predicts responses given new observations by using both models. The paper also compares the performance of proposed method with stepwise regression via a real data of ample obtained in a steel process.

  • PDF

Severity Prediction of Sleep Respiratory Disease Based on Statistical Analysis Using Machine Learning (머신러닝을 활용한 통계 분석 기반의 수면 호흡 장애 중증도 예측)

  • Jun-Su Kim;Byung-Jae Choi
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2023
  • Currently, polysomnography is essential to diagnose sleep-related breathing disorders. However, there are several disadvantages to polysomnography, such as the requirement for multiple sensors and a long reading time. In this paper, we propose a system for predicting the severity of sleep-related breathing disorders at home utilizing measurable elements in a wearable device. To predict severity, the variables were refined through a three-step variable selection process, and the refined variables were used as inputs into three machine-learning models. As a result of the study, random forest models showed excellent prediction performance throughout. The best performance of the model in terms of F1 scores for the three threshold criteria of 5, 15, and 30 classified as the AHI index was about 87.3%, 90.7%, and 90.8%, respectively, and the maximum performance of the model for the three threshold criteria classified as the RDI index was approx 79.8%, 90.2%, and 90.1%, respectively.

Prediction of Pitting Corrosion Characteristics of AL-6XN Steel with Sensitization and Environmental Variables Using Multiple Linear Regression Method (다중선형회귀법을 활용한 예민화와 환경변수에 따른 AL-6XN강의 공식특성 예측)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.302-309
    • /
    • 2020
  • This study aimed to predict the pitting corrosion characteristics of AL-6XN super-austenitic steel using multiple linear regression. The variables used in the model are degree of sensitization, temperature, and pH. Experiments were designed and cyclic polarization curve tests were conducted accordingly. The data obtained from the cyclic polarization curve tests were used as training data for the multiple linear regression model. The significance of each factor in the response (critical pitting potential, repassivation potential) was analyzed. The multiple linear regression model was validated using experimental conditions that were not included in the training data. As a result, the degree of sensitization showed a greater effect than the other variables. Multiple linear regression showed poor performance for prediction of repassivation potential. On the other hand, the model showed a considerable degree of predictive performance for critical pitting potential. The coefficient of determination (R2) was 0.7745. The possibility for pitting potential prediction was confirmed using multiple linear regression.

The prediction of interest rate using artificial neural network models

  • Hong, Taeho;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.741-744
    • /
    • 1996
  • Artifical Neural Network(ANN) models were used for forecasting interest rate as a new methodology, which has proven itself successful in financial domain. This research intended to construct ANN models which can maximize the performance of prediction, regarding Corporate Bond Yield (CBY) as interest rate. Synergistic Market Analysis (SMA) was applied to the construction of models [Freedman et al.]. In this aspect, while the models which consist of only time series data for corporate bond yield were devloped, the other models generated through conjunction and reorganization of fundamental variables and market variables were developed. Every model was constructed to predict 1,6, and 12 months after and we obtained 9 ANN models for interest rate forecasting. Multi-layer perceptron networks using backpropagation algorithm showed good performance in the prediction for 1 and 6 months after.

  • PDF

Development of the Roundwood Import Prediction Model

  • Kim, Dong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.222-226
    • /
    • 2007
  • This study developed the Korean roundwood import prediction model using vector autoregressive (VAR) method. The roundwood was divided into softwood and hardwood by species. The VAR model of roundwood import was specified with two lagged endogenous variables, that is, roundwood import volume and roundwood import price. The results showed that the significance levels of F-statistics in the softwood and hardwood roundwood import equations rejected the hypothesis that all coefficients are zero. So, we concluded that roundwood import volume can be explained by lagged import volume and lagged import price in Korea. The coefficient signs of all variables were as expected. Also, the model has good explanatory power, and there is no autocorrelation.

Analysis of the prediction problem in linear regression

  • Byun, Jai-Hyun;Yum, Bong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.245-253
    • /
    • 1990
  • In a regression relationship the independent variables are frequently measured with error when measurements are made in the field under less controlled conditions, or when accurate instruments are not available. This paper deals with the prediction problem for the above situation. The integrated mean square error of prediction (IMSE) is developed as a measure of the effect of the errors in the independent variables on the predicted values. The IMSE may be used for assessing the severeness of measurement errors as well as for comparing competing estimators. An example from the area of work measurement is analyzed.

  • PDF