• Title/Summary/Keyword: Prediction of User's Activity

Search Result 12, Processing Time 0.025 seconds

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

Analysis and Prediction Algorithms on the State of User's Action Using the Hidden Markov Model in a Ubiquitous Home Network System (유비쿼터스 홈 네트워크 시스템에서 은닉 마르코프 모델을 이용한 사용자 행동 상태 분석 및 예측 알고리즘)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Hwang, Gu-Youn;Choi, Jin-Wook
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • This paper proposes an algorithm that predicts the state of user's next actions, exploiting the HMM (Hidden Markov Model) on user profile data stored in the ubiquitous home network. The HMM, recognizes patterns of sequential data, adequately represents the temporal property implicated in the data, and is a typical model that can infer information from the sequential data. The proposed algorithm uses the number of the user's action performed, the location and duration of the actions saved by "Activity Recognition System" as training data. An objective formulation for the user's interest in his action is proposed by giving weight on his action, and change on the state of his next action is predicted by obtaining the change on the weight according to the flow of time using the HMM. The proposed algorithm, helps constructing realistic ubiquitous home networks.

Mobile health service user characteristics analysis and churn prediction model development (모바일 헬스 서비스 사용자 특성 분석 및 이탈 예측 모델 개발)

  • Han, Jeong Hyeon;Lee, Joo Yeoun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • As the average life expectancy is rising, the population is aging and the number of chronic diseases is increasing. This has increased the importance of healthy life and health management, and interest in mobile health services is on the rise thanks to the development of ICT(Information and communication technologies) and the smartphone use expansion. In order to meet these interests, many mobile services related to daily health are being launched in the market. Therefore, in this study, the characteristics of users who actually use mobile health services were analyzed and a predictive model applied with machine learning modeling was developed. As a result of the study, we developed a prediction model to which the decision tree and ensemble methods were applied. And it was found that the mobile health service users' continued use can be induced by providing features that require frequent visit, suggesting achievable activity missions, and guiding the sensor connection for user's activity measurement.

Prediction of Dietary Knowledge using Multiple Regression Analysis for Preventing Stomach Diseases (위장질환 예방을 위한 다중회귀분석을 이용한 식이지식 예측)

  • Choi, So-Young;Kim, Joo-Chang;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.1-6
    • /
    • 2019
  • Modern society is undergoing nutritional imbalance according to the diet as the number of one person increases. This is increasing the incidence of chronic diseases such as gastrointestinal diseases and digestive diseases. This study suggests the prediction of dietary knowledge using multiple regression analysis for preventing chronic stomach diseases. The proposed method manages user's stomach diseases and dietary nutrition through the prediction of nutrition knowledge. It collects user's PHR through smart device and integrates in the health platform. The integrated data analyzes the dietary and activity of the user through multiple regression analysis. It predicts the required nutrients and provides services to users through applications. Therefore, it suggests recommended dietary components and consumed calories, appropriate dietary components based on the user's basal metabolism, and gastrointestinal levels. With the personalized health management, modern people can manage gastrointestinal diseases through a balanced diet.

Development of the Atomated Prediction System for Seasonal Tropical Cyclone Activity over the Western North Pacific and its Evaluation for Early Predictability (북서태평양 태풍 진로의 계절예측시스템 자동화 구축 및 조기 예측성의 검증)

  • Jin, Chun-Sil;Ho, Chang-Hoi;Park, Doo-Sun R.;Choi, Woosuk;Kim, Dasol;Lee, Jong-Ho;Chang, Ki-Ho;Kang, Ki-Ryong
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.123-130
    • /
    • 2014
  • The automated prediction system for seasonal tropical cyclone (TC) activity is established at the National Typhoon Center of the Korea Meteorological Administration (KMA) to provide effective operation and control of the system for user who lacks knowledge of the system. For automation of the system, two procedures which include subjective decisions by user are performed in advance, and their output data are provided as input data. To provide the capability to understand the operational processes for operational user, the input and output data are summarized with each process, and the directory structure is reconstructed following KMA's standard. We introduce a user interface using namelist input parameters to effectively control operational conditions which is fixed or should be manually set in the previous version of the prediction system. To operationally use early prediction which become available through the automation, its performances are evaluated according to initial condition dates. As a result, high correlations between the observed and predicted TC counts are kept for all track clusters even though advancing the initial condition date from May to January.

Smartphone-User Interactive based Self Developing Place-Time-Activity Coupled Prediction Method for Daily Routine Planning System (일상생활 계획을 위한 스마트폰-사용자 상호작용 기반 지속 발전 가능한 사용자 맞춤 위치-시간-행동 추론 방법)

  • Lee, Beom-Jin;Kim, Jiseob;Ryu, Je-Hwan;Heo, Min-Oh;Kim, Joo-Seuk;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.154-159
    • /
    • 2015
  • Over the past few years, user needs in the smartphone application market have been shifted from diversity toward intelligence. Here, we propose a novel cognitive agent that plans the daily routines of users using the lifelog data collected by the smart phones of individuals. The proposed method first employs DPGMM (Dirichlet Process Gaussian Mixture Model) to automatically extract the users' POI (Point of Interest) from the lifelog data. After extraction, the POI and other meaningful features such as GPS, the user's activity label extracted from the log data is then used to learn the patterns of the user's daily routine by POMDP (Partially Observable Markov Decision Process). To determine the significant patterns within the user's time dependent patterns, collaboration was made with the SNS application Foursquare to record the locations visited by the user and the activities that the user had performed. The method was evaluated by predicting the daily routine of seven users with 3300 feedback data. Experimental results showed that daily routine scheduling can be established after seven days of lifelogged data and feedback data have been collected, demonstrating the potential of the new method of place-time-activity coupled daily routine planning systems in the intelligence application market.

Design of User Concentration Classification Model by EEG Analysis Based on Visual SCPT

  • Park, Jin Hyeok;Kang, Seok Hwan;Lee, Byung Mun;Kang, Un Gu;Lee, Young Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.129-135
    • /
    • 2018
  • In this study, we designed a model that can measure the level of user's concentration by measuring and analyzing EEG data of the subjects who are performing Continuous Performance Test based on visual stimulus. This study focused on alpha and beta waves, which are closely related to concentration in various brain waves. There are a lot of research and services to enhance not only concentration but also brain activity. However, there are formidable barriers to ordinary people for using routinely because of high cost and complex procedures. Therefore, this study designed the model using the portable EEG measurement device with reasonable cost and Visual Continuous Performance Test which we developed as a simplified version of the existing CPT. This study aims to measure the concentration level of the subject objectively through simple and affordable way, EEG analysis. Concentration is also closely related to various brain diseases such as dementia, depression, and ADHD. Therefore, we believe that our proposed model can be useful not only for improving concentration but also brain disease prediction and monitoring research. In addition, the combination of this model and the Brain Computer Interface technology can create greater synergy in various fields.

A Study on Proposing a Guideline for Healthcare Service Visualization - Focusing on the mobile healthcare applications - (헬스케어 데이터 시각화 연구 - 모바일 헬스케어 서비스를 중심으로 -)

  • Roh, Eun Ji;Park, Seung ho
    • Design Convergence Study
    • /
    • v.15 no.4
    • /
    • pp.1-16
    • /
    • 2016
  • Healthcare service helps users' health management by collecting an individual user's activity and biometric data from mobile devices and by providing them to the user. As a result, it has become necessary to perform a research on how to show the collected data. According to information visualization, the same data can have various interpretations depending on how they are represented. Healthcare data must be elivered to information acceptors without errors or distortion as they are directly related to people's health. With the expansion of healthcare service by the development of technology, this study could measure various data from users and was started to provide a necessary guideline for the visualization of measured numerical data. To propose a specific visualization by applying the visualization direction, 5 types of data including present value, measured value, relative value, relation data, and prediction value were set as the values necessary for the continuous use of mobile healthcare. Visualization was proposed concretely by applying clarity, variable comparison, brevity, relation, reliability, independence, and contextuality, which are the criteria for vitalizing the healthcare service.

A Study on the Practical Use of Human Alertness for Flight Safety Program (비행안전 프로그램으로서의 생체 활성도 활용방안 연구)

  • Lee, Dal-Ho;Choe, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.13-22
    • /
    • 1998
  • Aircraft and the three-dimensional environment in which they operate are not user-friendly for human beings. As a result, maintaining the proficiencies necessary to safely and efficiently fly an airplane are difficult, and costly. The physiological and emotional status of the human element remains crucial in maintaining safe performance by all crew members. In the study of Hagiwara et al.(1993). they called the physiological and emotional status of the human element into the human alertness or physiological activity and stress, fatigue, circadian rhythm, alcohol. smoking, and self-medication are known the major factors that deteriorate the human alertness. Accordingly. this paper deals with the quantitative and objective performance test based on tracking error and reaction time by means of the new computer test program into which the perception-motion system of human beings is applied. Throughout this experiment using performance test, the results suggest that performance capability in state of sleep deprivation 2 hours and alcoholic 0.05~0.06% in blood were more impaired than one in a normal state, and they further showed statistically significant differences between them, which were influenced by impairment factors of body regulation and pilot's grade. We also obtained the prediction value and the 95% confidence interval of tracking error and reaction time at the normal state for the purpose of distinguishing performance capability between the normal state and the abnormal state. And it is expected that the evaluation of human alertness using performance test will be applied to the quantitative assessment of an each pilot's realistic consciousness/attention, and will lead a flight commander to the accurate decision of mission approval prior to a flight.

  • PDF

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.