Machine fault prognosis techniques have been considered profoundly in the recent time due to their profit for reducing unexpected faults or unscheduled maintenance. With those techniques, the working conditions of components, the trending of fault propagation, and the time-to-failure are forecasted precisely before they reach the failure thresholds. In this work, we propose an approach of Least Square Regression Tree (LSRT), which is an extension of the Classification and Regression Tree (CART), in association with one-step-ahead prediction of time-series forecasting technique to predict the future conditions of machines. In this technique, the number of available observations is firstly determined by using Cao's method and LSRT is employed as prognosis system in the next step. The proposed approach is evaluated by real data of low methane compressor. Furthermore, the comparison between the predicted results of CART and LSRT are carried out to prove the accuracy. The predicted results show that LSRT offers a potential for machine condition prognosis.
본 논문에서 망막 질환 요인간의 의존도 분석을 위해 효율적인 분류기를 활용할 수 있는 방안을 제시하였다. 먼저 여러 베이지안 네트워크 중에서 TAN (Tree-Augmented Naive Bayesian Network), GBN(General Bayesian Network)과 Markov Blanket으로 특징축소된 GBN과의 분류성능과 예측정확률을 비교분석하였다. 그리고 처음으로, 높은 성능을 보인 TAN을 망막 질환 임상데이터의 의존도 분석에 적용하였다. 의존도 분석 결과, 망막 질환의 진단과 예후 예측에 활용의 가능성을 보였다.
Background and Purpose: Human epididymis protein 4 (HE4) has been suggested to be a novel biomarker of epithelial ovarian cancer (EOC). The present study aimed to evaluate and compare HE4 with the commonly used marker, carbohydrate antigen 125 (CA125), in prediction and therapy-monitoring of EOC. Patients and Methods: Serum HE4 concentrations from 123 ovarian cancer patients and 174 controls were measured by Roche electrochemiluminescent immunoassay (ECLIA). Risk of ovarian malignancy algorithm (ROMA) values were calculated and assessed. In addition, the prospects of HE4 detection for therapy-monitoring were evaluated in EOC patients. Results: The ROMA score could classify patients into high- and low-risk groups with malignancy. Indeed, lower serum HE4 was significantly associated with successful surgical therapy. Specifically, 38 patients with EOC exhibited a greater decline of HE4 compared with CA125. In contrast, elevation of HE4 better predicted recurrence (of 46, 11 patients developed recurrence, and with it increased HE4 serum concentrations) and a poor prognosis than CA125. Conclusions: This study suggests that serum HE4 levels are closely associated with outcome of surgical therapy and disease prognosis in Chinese EOC patients.
Considering various factors contributing oral malodor, the accurate prediction of prognosis is very important to both clinician and patients. The present study has been performed to invetigate the relationship between treatment effeicacy and pre-treatment volatile sulfur compounds (VSC) level. Ninety patients were divided into three groups, A(<150ppb), B(150< <200ppb), and C(>200ppb) groups, according to pre-treatment VSC level detected by Halimeter, and each group included 30 patients. Routine therapeutic measures for oral were provided to each patient which consisted of oral prophylaxis, tooth brushing and flossing instruction, tongue scraping by proper device, and gargling of 0.25% ZnCl2 Solution. The group with high pre-treatment VSC level (>150ppb) showed significant reduction of VSC level at 1 and 3 weeks after. However, the group with low pre-treatment VSC level (<150ppb) did not show any significant reduction during the experimental periods. Collectively, the results suggested that patients with high pre-treatment VSC level show better prognosis.
Eun Kyoung Hong;Seung Hong Choi;Dong Jae Shin;Sang Won Jo;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn;Sung-Hye Park;Jae-Kyoung Won;Tae Min Kim;Chul-Kee Park;Il Han Kim;Soon-Tae Lee
Korean Journal of Radiology
/
제22권2호
/
pp.233-242
/
2021
Objective: To evaluate the association of MRI features with the major genomic profiles and prognosis of World Health Organization grade III (G3) gliomas compared with those of glioblastomas (GBMs). Materials and Methods: We enrolled 76 G3 glioma and 155 GBM patients with pathologically confirmed disease who had pretreatment brain MRI and major genetic information of tumors. Qualitative and quantitative imaging features, including volumetrics and histogram parameters, such as normalized cerebral blood volume (nCBV), cerebral blood flow (nCBF), and apparent diffusion coefficient (nADC) were evaluated. The G3 gliomas were divided into three groups for the analysis: with this isocitrate dehydrogenase (IDH)-mutation, IDH mutation and a chromosome arm 1p/19q-codeleted (IDHmut1p/19qdel), IDH mutation, 1p/19q-nondeleted (IDHmut1p/19qnondel), and IDH wildtype (IDHwt). A prediction model for the genetic profiles of G3 gliomas was developed and validated on a separate cohort. Both the quantitative and qualitative imaging parameters and progression-free survival (PFS) of G3 gliomas were compared and survival analysis was performed. Moreover, the imaging parameters and PFS between IDHwt G3 gliomas and GBMs were compared. Results: IDHmut G3 gliomas showed a larger volume (p = 0.017), lower nCBF (p = 0.048), and higher nADC (p = 0.007) than IDHwt. Between the IDHmut tumors, IDHmut1p/19qdel G3 gliomas had higher nCBV (p = 0.024) and lower nADC (p = 0.002) than IDHmut1p/19qnondel G3 gliomas. Moreover, IDHmut1p/19qdel tumors had the best prognosis and IDHwt tumors had the worst prognosis among G3 gliomas (p < 0.001). PFS was significantly associated with the 95th percentile values of nCBV and nCBF in G3 gliomas. There was no significant difference in neither PFS nor imaging features between IDHwt G3 gliomas and IDHwt GBMs. Conclusion: We found significant differences in MRI features, including volumetrics, CBV, and ADC, in G3 gliomas, according to IDH mutation and 1p/19q codeletion status, which can be utilized for the prediction of genomic profiles and the prognosis of G3 glioma patients. The MRI signatures and prognosis of IDHwt G3 gliomas tend to follow those of IDHwt GBMs.
Koh, Jeong Suk;Kim, Yoon Joo;Kang, Da Hyun;Lee, Jeong Eun;Lee, Song-I
Journal of Yeungnam Medical Science
/
제38권4호
/
pp.318-325
/
2021
Background: The diagnosis and prediction of prognosis are important in patients with sepsis, and presepsin is helpful. In this study, we aimed to examine the usefulness of presepsin in predicting the prognosis of sepsis in Korea. Methods: Patients diagnosed with sepsis according to the sepsis-3 criteria were recruited into the study and classified into surviving and non-surviving groups based on in-hospital mortality. A total of 153 patients (32 and 121 patients with sepsis and septic shock, respectively) were included from July 2019 to August 2020. Results: Among the 153 patients with sepsis, 91 and 62 were in the survivor and non-survivor groups, respectively. Presepsin (p=0.004) and lactate (p=0.003) levels and the sequential organ failure assessment (SOFA) score (p<0.001) were higher in the non-survivor group. Receiver operating characteristic curve analysis revealed poor performances of presepsin and lactate in predicting the prognosis of sepsis (presepsin: area under the curve [AUC]=0.656, p=0.001; lactate: AUC=0.646, p=0.003). The SOFA score showed the best performance, with the highest AUC value (AUC=0.751, p<0.001). The prognostic cutoff point for presepsin was 1,176 pg/mL. Presepsin levels higher than 1,176 pg/mL (odds ratio [OR], 3.352; p<0.001), higher lactate levels (OR, 1.203; p=0.003), and higher SOFA score (OR, 1.249; p<0.001) were risk factors for in-hospital mortality. Conclusion: Presepsin levels were higher in non-survivors than in survivors. Thus, presepsin may be a valuable biomarker in predicting the prognosis of sepsis.
Kim, Gina;Friedmann, Patricia;Solsky, Ian;Muscarella, Peter;McAuliffe, John;In, Haejin
Journal of Gastric Cancer
/
제20권4호
/
pp.385-394
/
2020
Purpose: Patients with gastric cancer who receive neoadjuvant therapy are staged before treatment (cStage) and after treatment (ypStage). We aimed to compare the prognostic reliability of cStage and ypStage, alone and in combination. Materials and Methods: Data for all patients who received neoadjuvant therapy followed by surgery for gastric adenocarcinoma from 2004 to 2015 were extracted from the National Cancer Database. Kaplan-Meier (KM)curves were used to model overall survival based on cStage alone, ypStage alone, cStage stratified by ypStage, and ypStage stratified by cStage. P-values were generated to summarize the differences in KM curves. The discriminatory power of survival prediction was examined using Harrell's C-statistics. Results: We included 8,977 patients in the analysis. As expected, increasing cStage and ypStage were associated with worse survival. The discriminatory prognostic power provided by cStage was poor (C-statistic 0.548), while that provided by ypStage was moderate (C-statistic 0.634). Within each cStage, the addition of ypStage information significantly altered the prognosis (P<0.0001 within cStages I-IV). However, for each ypStage, the addition of cStage information generally did not alter the prognosis (P=0.2874, 0.027, 0.061, 0.049, and 0.007 within ypStages 0-IV, respectively). The discriminatory prognostic power provided by the combination of cStage and ypStage was similar to that of ypStage alone (C-statistic 0.636 vs. 0.634). Conclusions: The cStage is unreliable for prognosis, and ypStage is moderately reliable. Combining cStage and ypStage does not improve the discriminatory prognostic power provided by ypStage alone. A ypStage-based prognosis is minimally affected by the initial cStage.
암 환자에게 적절한 치료계획을 제공하기 위해 암의 진행양상 또는 환자의 생존 기간 등에 해당하는 환자의 예후를 정확히 예측하는 것은 생물정보학 분야에서 다루는 중요한 도전 과제 중 하나이다. 많은 연구에서 암 환자의 유전자 발현량 데이터를 이용하여 환자의 예후를 예측하는 기계학습 모델들이 많이 제안되어 오고 있다. 유전자 발현량 데이터는 약 17,000개의 유전자에 대한 수치값을 갖는 고차원의 수치형 자료이기에, 기존의 연구들은 특징 선택 또는 차원 축소 전략을 이용하여 예측 모델의 성능 향상을 도모하였다. 그러나 이러한 접근법은 특징 선택과 예측 모델의 훈련이 분리되어 있어서, 기계학습 모델은 선별된 유전자들이 생물학적으로 어떤 관계가 있는지 알기가 어렵다. 본 연구에서는 유전자 발현량 데이터를 이미지 형태로 변환하여 예후 예측이 효과적으로 특징 선택 및 예후 예측을 수행할 수 있는 기법을 제안한다. 유전자들 사이의 생물학적 상호작용 관계를 유전자 발현량 데이터에 통합하기 위해 Node2Vec을 활용하였으며, 2차원 이미지로 표현된 발현량 데이터를 효과적으로 학습할 수 있도록 합성곱 신경망 모델을 사용하였다. 제안하는 모델의 성능은 이중 교차검증을 통해 평가되었고, 유전자 발현량 데이터를 그대로 이용하는 기계학습모델보다 우월한 예후 예측 정확도를 가지는 것이 확인되었다. Node2Vec을 이용한 유전자 발현량의 새로운 이미지 표현법은 특징 선택으로 인한 정보의 손실이 없어 예측 모델의 성능을 높일 수 있으며, 이러한 접근법이 개인 맞춤형 의학의 발전에 이바지할 것으로 기대한다.
Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.
Izadi, Pantea;Noruzinia, Mehrdad;Fereidooni, Foruzandeh;Nateghi, Mohammad Reza
Asian Pacific Journal of Cancer Prevention
/
제13권8호
/
pp.4113-4117
/
2012
Breast cancer is a prevalent heterogeneous malignant disease. Gene expression profiling by DNA microarray can classify breast tumors into five different molecular subtypes: luminal A, luminal B, HER-2, basal and normal-like which have differing prognosis. Recently it has been shown that immunohistochemistry (IHC) markers including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2), can divide tumors to main subtypes: luminal A (ER+; PR+/-; HER-2-), luminal B (ER+;PR+/-; HER-2+), basal-like (ER-;PR-;HER2-) and Her2+ (ER-; PR-; HER-2+). Some subtypes such as basal-like subtype have been characterized by poor prognosis and reduced overall survival. Due to the importance of the ER signaling pathway in mammary cell proliferation; it appears that epigenetic changes in the $ER{\alpha}$ gene as a central component of this pathway, may contribute to prognostic prediction. Thus this study aimed to clarify the correlation of different IHC-based subtypes of breast tumors with $ER{\alpha}$ methylation in Iranian breast cancer patients. For this purpose one hundred fresh breast tumors obtained by surgical resection underwent DNA extraction for assessment of their ER methylation status by methylation specific PCR (MSP). These tumors were classified into main subtypes according to IHC markers and data were collected on pathological features of the patients. $ER{\alpha}$ methylation was found in 25 of 28 (89.3%) basal tumors, 21 of 24 (87.5%) Her2+ tumors, 18 of 34 (52.9%) luminal A tumors and 7 of 14 (50%) luminal B tumors. A strong correlation was found between $ER{\alpha}$ methylation and poor prognosis tumor subtypes (basal and Her2+) in patients (P<0.001). Our findings show that $ER{\alpha}$ methylation is correlated with poor prognosis subtypes of breast tumors in Iranian patients and may play an important role in pathogenesis of the more aggressive breast tumors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.