• Title/Summary/Keyword: Prediction of Port Efficiency

Search Result 18, Processing Time 0.019 seconds

Prediction Oil and Gas Throughput Using Deep Learning

  • Sangseop Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.155-161
    • /
    • 2023
  • 97.5% of our country's exports and 87.2% of imports are transported by sea, making ports an important component of the Korean economy. To efficiently operate these ports, it is necessary to improve the short-term prediction of port water volume through scientific research methods. Previous research has mainly focused on long-term prediction for large-scale infrastructure investment and has largely concentrated on container port water volume. In this study, short-term predictions for petroleum and liquefied gas cargo water volume were performed for Ulsan Port, one of the representative petroleum ports in Korea, and the prediction performance was confirmed using the deep learning model LSTM (Long Short Term Memory). The results of this study are expected to provide evidence for improving the efficiency of port operations by increasing the accuracy of demand predictions for petroleum and liquefied gas cargo water volume. Additionally, the possibility of using LSTM for predicting not only container port water volume but also petroleum and liquefied gas cargo water volume was confirmed, and it is expected to be applicable to future generalized studies through further research.

Forecasting the Busan Container Volume Using XGBoost Approach based on Machine Learning Model (기계 학습 모델을 통해 XGBoost 기법을 활용한 부산 컨테이너 물동량 예측)

  • Nguyen Thi Phuong Thanh;Gyu Sung Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Container volume is a very important factor in accurate evaluation of port performance, and accurate prediction of effective port development and operation strategies is essential. However, it is difficult to improve the accuracy of container volume prediction due to rapid changes in the marine industry. To solve this problem, it is necessary to analyze the impact on port performance using the Internet of Things (IoT) and apply it to improve the competitiveness and efficiency of Busan Port. Therefore, this study aims to develop a prediction model for predicting the future container volume of Busan Port, and through this, focuses on improving port productivity and making improved decision-making by port management agencies. In order to predict port container volume, this study introduced the Extreme Gradient Boosting (XGBoost) technique of a machine learning model. XGBoost stands out of its higher accuracy, faster learning and prediction than other algorithms, preventing overfitting, along with providing Feature Importance. Especially, XGBoost can be used directly for regression predictive modelling, which helps improve the accuracy of the volume prediction model presented in previous studies. Through this, this study can accurately and reliably predict container volume by the proposed method with a 4.3% MAPE (Mean absolute percentage error) value, highlighting its high forecasting accuracy. It is believed that the accuracy of Busan container volume can be increased through the methodology presented in this study.

An Empirical Measurement Way of Efficiency Prediction for Korean Seaports : SBM and Wilcoxson Signed-Rank Test Approach (항만의 효율성을 예측하기 위한 실증적 측정방법 - SBM과 윌콕슨부호순위검정접근 -)

  • Park, No-Gyeong
    • Journal of Korea Port Economic Association
    • /
    • v.24 no.4
    • /
    • pp.313-327
    • /
    • 2008
  • The purpose of this paper is to show the empirical measurement way for predicting the seaport efficiency by using SBM with Wilcoxson signed-rank test under CRS(constant returns to scale) condition for 20 Korean ports during 1994-2003 for 2 inputs(birthing capacity, cargo handling capacity) and 3 outputs(Export and Import Quantity, Number of Ship Calls, Port Revenue). The main empirical results of this paper are as follows. First, forecasting data have well reflected the real data according to the Wilcoxon signed rank test, because p values have exceeded the 0.05 significance level. Second, SBM has shown the effectiveness for predicting the ports efficiency even though the predicting powers are different according to the levels of p values. The policy implication to the Korean seaports and planner is that Korean seaports should introduce the new methods like SBM method with Wilcoxon signed rank test for predicting the port performance and enhancing the efficiency.

  • PDF

Development of Prediction Model for Yard Tractor Working Time in Container Terminal (컨테이너 터미널 야드 트랙터 작업시간 예측 모형 개발)

  • Jae-Young Shin;Do-Eun Lee;Yeong-Il Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.57-58
    • /
    • 2023
  • The working time for loading and transporting containers in the container terminal is one of the factors directly related to port productivity, and minimizing working time for these operations can maximize port productivity. Among working time for container operations, the working time of yard tractors(Y/T) responsible for the transportation of containers between berth and yard is a significant portion. However, it is difficult to estimate the working time of yard tractors quantitatively, although it is possible to estimate it based on the practical experience of terminal operators. Recently, a technology based on IoT(Internet of Things), one of the core technologies of the 4th industrial revolution, is being studied to monitoring and tracking logistics resources within the port in real-time and calculate working time, but it is challenging to commercialize this technology at the actual port site. Therefore, this study aims to develop yard tractor working time prediction model to enhance the operational efficiency of the container terminal. To develop the prediction model, we analyze actual port operation data to identify factors that affect the yard tractor's works and predict its working time accordingly.

  • PDF

Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India

  • Roshni, Thendiyath;K., Md. Sajid;Samui, Pijush
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.319-328
    • /
    • 2017
  • Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.

Prediction of Planning Time in Busan Ports-Connected Expressways

  • Kim, Tae-Gon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.2
    • /
    • pp.51-56
    • /
    • 2016
  • Expressways mean the primary arterial highways with a high level of efficiency and safety. However, Gyeongbu and Namhae expressways connected with Busan ports are showing travel time delay by increased traffic including the medium/large-sized vehicles of about 20% compared to those of about 13% regardless of the peak periods. This study, thus, intends to analyze lane traffic characteristics in the basic 8-lane segments of the above-mentioned expressways, compute the planning and buffer times based on travel time reliability, find the lane speed showing a higher correlation with planning time between the lane speeds in the basic 8-lane segments, and finally suggest a correlation model for predicting the planning time in expressways.

Prediction of Traffic Speed in a Container Terminal Using Yard Tractor Operation Data (내부트럭 운영 정보를 이용한 컨테이너 터미널 내 교통 속도예측)

  • Kim, Taekwang;Heo, Gyoungyoung;Lee, Hoon;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • An important operational goal of a container terminal is to maximize the efficiency of the operation of quay cranes (QCs) that load and/or unload containers onto and from vessels. While the maximization of the efficiency of the QC operation requires minimizing the delay of yard tractors (YT) that transport containers between the storage yard and QCs, the delay is often inevitable because of traffic congestion. In this paper, we propose a method for learning a model that predicts traffic speed in a terminal using only YT operation data, even though the YT traffic is mixed with that of external trucks. Without any information on external truck traffic, we could still make a reasonable traffic forecast because the YT operation data contains information on the YT routes in the near future. The results of simulation experiments showed that the model learned by the proposed method could predict traffic speed with significant accuracy.

A Study on the Prediction of Fuel Consumption of a Ship Using the Principal Component Analysis (주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구)

  • Kim, Young-Rong;Kim, Gujong;Park, Jun-Bum
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • As the regulations of ship exhaust gas have been strengthened recently, many measures are under consideration to reduce fuel consumption. Among them, research has been performed actively to develop a machine-learning model that predicts fuel consumption by using data collected from ships. However, many studies have not considered the methodology of the main parameter selection for the model or the processing of the collected data sufficiently, and the reckless use of data may cause problems such as multicollinearity between variables. In this study, we propose a method to predict the fuel consumption of the ship by using the principal component analysis to solve these problems. The principal component analysis was performed on the operational data of the 13K TEU container ship and the fuel consumption prediction model was implemented by regression analysis with extracted components. As the R-squared value of the model for the test data was 82.99%, this model would be expected to support the decision-making of operators in the voyage planning and contribute to the monitoring of energy-efficient operation of ships during voyages.

A Study on Predicting the Logistics Demand of Inland Ports on the Yangtze River (장강 내수로 항만의 물류 수요 예측에 관한 연구)

  • Zhen Wu;Hyun-Chung Kim
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.217-242
    • /
    • 2023
  • This study aims to analyze the factors influencing the logistics demand of inland ports along the Yangtze River and predict future port logistics demand based on these factors. The logistics demand prediction using system dynamics techniques was conducted for a total of six ports, including Chongqing and Yibin ports in the upper reaches, Jingzhou and Wuhan ports in the middle reaches, and Nanjing and Suzhou ports in the lower reaches of the Yangtze River. The logistics demand for all ports showed an increasing trend in the mid-term prediction until 2026. The logistics demand of Chongqing port was mainly influenced by the scale of the hinterland economy, while Yibin port appeared to heavily rely on the level of port automation. In the case of the upper and middle reach ports, logistics demand increased as the energy consumption of the hinterland increased and the air pollution situation worsened. The logistics demand of the middle reach ports was greatly influenced by the hinterland infrastructure, while the lower reach ports were sensitive to changes in the urban construction area. According to the sensitivity analysis, the logistics demand of ports relying on large cities was relatively stable against the increase and decrease of influential factors, while ports with smaller hinterland city scales reacted sensitively to changes in influential factors. Therefore, a strategy should be established to strengthen policy support for Chongqing port as the core port of the upper Yangtze River and have surrounding ports play a supporting role for Chongqing port. The upper reach ports need to play a supporting role for Chongqing port and consider measures to enhance connections with middle and lower reach ports and promote the port industry. The development strategy for inland ports along the Yangtze River suggests the establishment of direct routes and expansion of the transportation network for South Korean ports and stakeholders. It can suggest expanding the hinterland network and building an efficient transportation system linked with the logistics hub. Through cooperation, logistics efficiency can be enhanced in both regions, which will contribute to strengthening the international position and competitiveness of each port.

A Basic Study on Prediction Module Development of Collision Risk based on Ship's Operator's Consciousness (선박운항자 의식 기반 충돌 위험도 예측 모듈 개발에 관한 연구)

  • Park, Young-Soo;Park, Sang-Won;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.199-207
    • /
    • 2015
  • In ports of Korea, the marine traffic flow is congested due to a large number of vessels coming in and going out. In order to improve the safety and efficiency of these vessels, South Korea is operating with a Vessel Traffic Service System, which is monitoring its waters for 24 hours. However despite these efforts of the VTS (Vessel Traffic Service) officers, collisions are occurring continuously, the risk situation is analyzed that occurs once in about 20 minutes, the risk may be greater. It investigated to reduce these accidents by providing a safety standard for collision danger in a timely manner. Thus, this study has developed a risk prediction module to predict risk in advance. This module can avoid collision risk to adjust the speed and course of ship using a risk evaluation model based on ship operator's risk perspective. Using this module, the ship operators and VTS officers can easily be identified risks in complex traffic situations, so they can take an appropriate action against danger in near future including course and speed change. To verify the effectiveness of this module, this paper predicted the risk of each encounter situation and confirmed to be capable of identifying a risk changes in specific course and speed changes at Busan coastal water.