• Title/Summary/Keyword: Prediction of Learner's Academic Performance

Search Result 2, Processing Time 0.016 seconds

An Inquiry into Prediction of Learner's Academic Performance through Learner Characteristics and Recommended Items with AI Tutors in Adaptive Learning (적응형 온라인 학습환경에서 학습자 특성 및 AI튜터 추천문항 학습활동의 학업성취도 예측력 탐색)

  • Choi, Minseon;Chung, Jaesam
    • Journal of Information Technology Services
    • /
    • v.20 no.4
    • /
    • pp.129-140
    • /
    • 2021
  • Recently, interest in AI tutors is rising as a way to bridge the educational gap in school settings. However, research confirming the effectiveness of AI tutors is lacking. The purpose of this study is to explore how effective learner characteristics and recommended item learning activities are in predicting learner's academic performance in an adaptive online learning environment. This study proposed the hypothesis that learner characteristics (prior knowledge, midterm evaluation) and recommended item learning activities (learning time, correct answer check, incorrect answer correction, satisfaction, correct answer rate) predict academic achievement. In order to verify the hypothesis, the data of 362 learners were analyzed by collecting data from the learning management system (LMS) from the perspective of learning analytics. For data analysis, regression analysis was performed using the regsubset function provided by the leaps package of the R program. The results of analyses showed that prior knowledge, midterm evaluation, correct answer confirmation, incorrect answer correction, and satisfaction had a positive effect on academic performance, but learning time had a negative effect on academic performance. On the other hand, the percentage of correct answers did not have a significant effect on academic performance. The results of this study suggest that recommended item learning activities, which mean behavioral indicators of interaction with AI tutors, are important in the learning process stage to increase academic performance in an adaptive online learning environment.

Study for Prediction System of Learning Achievements of Cyber University Students using Deep Learning based on Autoencoder (오토인코더에 기반한 딥러닝을 이용한 사이버대학교 학생의 학업 성취도 예측 분석 시스템 연구)

  • Lee, Hyun-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1115-1121
    • /
    • 2018
  • In this paper, we have studied a data analysis method by deep learning to predict learning achievements based on accumulated data in cyber university learning management system. By predicting learner's academic achievement, it can be used as a tool to enhance learner's learning and improve the quality of education. In order to improve the accuracy of prediction of learning achievements, the autoencoder based attendance prediction method is developed to improve the prediction performance and deep learning algorithm with ongoing evaluation metrics and predicted attendance are used to predict the final score. In order to verify the prediction results of the proposed method, the final grade was predicted by using the evaluation factor attendance data of the learning process. The experimental result showed that we can predict the learning achievements in the middle of semester.