• Title/Summary/Keyword: Prediction of Failure time

Search Result 313, Processing Time 0.029 seconds

A Study on Failure Characteristics and Reliability Prediction of the Rice Combine Harvester (콤바인 수확기(收穫機)의 고장특성(故障特性) 및 신뢰성(信賴性) 예측(豫測)에 관(關)한 연구(硏究))

  • Kim, H.K.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.1
    • /
    • pp.76-85
    • /
    • 1986
  • This study was intended to examine the failure characteristics and breakdowns of the head-fed type combines generally used on farms. The failure distribution was assumed to follow Weibull distribution function and the Weibull parameters of the major parts, units and combine as whole were estimated by using the data collected in a survey. A computer program for the estimation of the Weibull parameter was developed. Monte Carlo method was used in predicting the time between failures. The results of study may be summarized as follows: 1. The number of failures per combine was 4.83 times per year and 0.3 times per hectare of combines of different ages. 2. According to the Kolmogorov-Smirnov test method, it was proved that the Weibull distribution function is well fitted to the characteristics of the failure and breakdowns of combines. 3. Weibull parameters of failure distribution of the combine as a whole were estimated to give the shape parameter ${\beta}$=1.3089 and the scale parameter ${\alpha}$=105.2409. The combining area with 80% reliability was 1.1 ha, and the probability of operating the combine without any failure for a year, was $2.76{\times}10^{-4}$. 4. The mean time between failures (MTBF) of the combines was predicted to be 3.2 ha of operation, which corresponds to 32 hours of operation.

  • PDF

A Prediction System for Server Performance Management (서버 성능 관리를 위한 장애 예측 시스템)

  • Lim, Bock-Chool;Kim, Soon-Gohn
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.684-690
    • /
    • 2018
  • In society of the big data is being recognized as one of the core technologies witch is analysis of the collected information, the intelligent evolution of society seems to be more oriented society through an optimized value creation based on a prediction technique. If we take advantage of technologies based on big data about various data and a large amount of data generated during system operation, it will be possible to support stable operation and prevention of faults and failures. In this paper, we suggested an environment using the collection and analysis of big data, and proposed an derive time series prediction model for predicting failure through server performance monitoring for data collected and analyzed. It can be capable of supporting stable operation of the IT systems through failure prediction model for the server operator.

A Metamodeling Approach for Leader Progression Model-based Shielding Failure Rate Calculation of Transmission Lines Using Artificial Neural Networks

  • Tavakoli, Mohammad Reza Bank;Vahidi, Behrooz
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.760-768
    • /
    • 2011
  • The performance of transmission lines and its shielding design during a lightning phenomenon are quite essential in the maintenance of a reliable power supply to consumers. The leader progression model, as an advanced approach, has been recently developed to calculate the shielding failure rate (SFR) of transmission lines using geometrical data and physical behavior of upward and downward lightning leaders. However, such method is quite time consuming. In the present paper, an effective method that utilizes artificial neural networks (ANNs) to create a metamodel for calculating the SFR of a transmission line based on shielding angle and height is introduced. The results of investigations on a real case study reveal that, through proper selection of an ANN structure and good training, the ANN prediction is very close to the result of the detailed simulation, whereas the Processing time is by far lower than that of the detailed model.

A Study on the Failure and Life Assessment of High Speed Spindle (고속주축의 고장 및 수명평가에 관한 연구)

  • Lee, Tae Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • A reliability evaluation or prediction can be defined as MTBF which stands for mean time between failures (Exclusively for repairable failures). Spindle system has huge effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, it is unusually difficult to predict reliability because there are lack of data and research about reliability of spindle system. Standards and methods of examinations for reliability evaluation of machine tools are scarce at local and abroad as well. Therefore, this research is meant to improve the reliability of spindle system before mass produced with developing standards of reliability and methods of examinations through FMEA to assess reliability of spindle system in prototype stages of developing high speed spindle system of machining center.

Accelerated Creep Testing of Geogrids for Slopes and Embankments: Statistical Models and Data Analysis

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.227-232
    • /
    • 2004
  • The failure of geogrids can be defined as an excessive creep strain which causes the collapse of slopes and embankments. In this study, the accelerated creep tests were applied to two different types of polyester geogrids, at 75, 80, 85$^{\circ}C$ by applying 50% load of ultimate tensile strengths using a newly designed test equipment which is allowed the creep testing at higher temperatures. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results indicate that the conventional procedures with the newly designed test equipment are shown to be effective in prediction of the lifetimes of geogrids with shorter test times. In addition, the predicted lifetimes of geogrids having different structures at various creep strains give guidelines for users to select the proper geogrids in the fields.

  • PDF

A Service Life Prediction for Joint and Cracked Concrete Exposed to Carbonation Based on Stochastic Approach (신뢰성 해석을 통한 탄산화에 노출된 타설이음부 및 균열부 콘크리트의 내구수명 평가)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.597-600
    • /
    • 2006
  • In this study, field survey of carbonation for RC column in city is carried out and carbonation behavior in sound, joint, and cracked concrete is also analyzed. Futhermore, probability of durability failure with time is calculated through considering probability variables such as concrete cover depth and carbonation depth which are obtained from field survey. The probability of durability failure in cracked concrete with considering crack width and time is also calculated and service life is predicted based on intended failure probability in domestic specification. Through this study, it is known that service life in a RC column is evaluated differently for local conditions and each service life is rapidly decreased with decrease in cover depth and increase in crack width.

  • PDF

A Study on the Reliability Analysis for Smoke Detector using Dust (분진을 이용한 연기감지기 신뢰성 분석에 관한 연구)

  • Hong, Sung Ho;Choi, Moon Soo;Lee, Young Man
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.11-16
    • /
    • 2013
  • This paper presents a study on the analyzing reliability of smoke fire detector using accelerated life test. In general, the smoke fire detector is broken by dust which flow in smoke detection chamber. In order to conduct accelerated life test of smoke fire detector dust is set accelerated factor in this paper. The dust is fly-ash which is test particle 5th regulated by KS A 0090. The dust accelerated level is 60 g, 180 g and 360 g and failure time is measured by smoke sensitivity testing. It is considered to failure of detector if detector don't operate within 30 secconds when subjected to an air stream having a velocity of 20 cm/s~40 cm/s containing smoke with a concentration of 15% of rate of light-response of 1 m. The goodness of fit test and mean life prediction conduct using the failure time. The result show that life distribution fits the weibull distribution for failure time data and the mean lifes calculate 22.5 year in domestic product and 14.7 years in overseas product applied dust stress only.

THE RELIABILITY PREDICTION OF PCB CARDS OF POWER CABINET OF CONTROL ROD CONTROL SYSTEM (제어봉 제어 시스템의 전력함 PCB 카드에 대한 신뢰성 예측)

  • Won, Jung-Hae;Suk, Sur-Jung;Kyun, Yook-Sim;Han, Nam-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2028-2030
    • /
    • 2003
  • This paper describes the results of reliability prediction analysis of control rod control system, which is being developed as part of KNICS project. The results of reliability prediction indicate MTBF(Mean Time Between Failure) of cards for control rod control system. A purpose of reliability prediction is to evaluate MTBF of cards, identify the design drawbacks of cards, and propose design improvement to a designer to help design the more reliable control rod control system. This reliability prediction analysis used the the part count and part stress method in the basis of MIL-HDBK-217F.

  • PDF

EPET-WL: Enhanced Prediction and Elapsed Time-based Wear Leveling Technique for NAND Flash Memory in Portable Devices

  • Kim, Sung Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2016
  • Magnetic disks have been used for decades in auxiliary storage devices of computer systems. In recent years, the use of NAND flash memory, which is called SSD, is increased as auxiliary storage devices. However, NAND flash memory, unlike traditional magnetic disks, necessarily performs the erase operation before the write operation in order to overwrite data and this leads to degrade the system lifetime and performance of overall NAND flash memory system. Moreover, NAND flash memory has the lower endurance, compared to traditional magnetic disks. To overcome this problem, this paper proposes EPET (Enhanced Prediction and Elapsed Time) wear leveling technique, which is especially efficient to portable devices. EPET wear leveling uses the advantage of PET (Prediction of Elapsed Time) wear leveling and solves long-term system failure time problem. Moreover, EPET wear leveling further improves space efficiency. In our experiments, EPET wear leveling prolonged the first bad time up to 328.9% and prolonged the system lifetime up to 305.9%, compared to other techniques.

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.