• Title/Summary/Keyword: Prediction of Concrete Strength

Search Result 733, Processing Time 0.034 seconds

An Experimental Study on Size-effect for Characteristic of Flexural Strength of Pavement Concrete (포장 콘크리트의 크기 효과에 따른 휨 강도 특성 분석에 관한 실험적 연구)

  • Lee, Hyeongi;Oh, Hongseob;Sim, Jongsung;Sim, Jaewon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.299-306
    • /
    • 2015
  • The quality for the domestic pavement is evaluated based on flexural strength at the age of 28 days in accordance with KS regulation. Most specimens of the flexural tensile strength used currently are relatively large ones with a dimension of $150{\times}150{\times}550mm$. Accordingly, it is difficult to treat the specimens, and the utilization of a curing tank is low. In this paper, the study tried to resolve the problem by specimen size specified in the code. For this purpose, a flexural strength test was conducted according to the log scale within the specimen size specified by the KS. And, based on the results of this experiment, a comparative analysis was conducted using the prediction formula of Size Effect Law (SEL) proposed by Bazant to examine the correlation between specimen sizes, so as to use the result as basic data for the reduction of the specimen size in the quality evaluation of concrete pavement.

Assessment of Fracture Behaviors for CIP Anchors Fastened to Cracked and Uncracked Concretes

  • Yoon, Young-Soo;Kim, Ho-Seop;Kim, Sang-Yun
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.33-41
    • /
    • 2001
  • This paper presents the crack effect on CIP anchors and prediction of tensile capacity, as governed by concrete cone failure. Single anchors where located at center of concrete specimen. Three different types of cracks such as crack width of 0.2 mm and 0.5 mm, crack depth of 10 cm and 20cm , and crack location of center and off-center point were simulated. Static tensile load was applied to 7/8-in. CIP anchors of 10 cm and 20 cm embedment length in concrete with compressive strength of 280 kgf/$\textrm{cm}^2$. Tested pullout capacities were compared to the values determined using current design methods (such as ACI 349-97, ACI 349 revision and CEB-FIP which is based on CCD Method). The comparison of CCD Method and ACI revision showed almost the same values in uncracked concrete specimen. In cracked concrete, CCD Method predicted conservative values. Three-dimensional non-linear FEM modeling also has been performed to determine the stresses distribution and crack inclination.

  • PDF

Creep and shrinkage properties using concrete test results and prediction models for high strength and high performance concrete (실험결과와 예측식을 통한 고강도 고성능 콘크리트의 크리프 및 건조수축 특성파악)

  • Cha, Han-Il;Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.709-712
    • /
    • 2008
  • RC super tall buildings are planned and constructed recently in domestic area. Concrete is characterized by time dependant material such as creep and shrinkage. For this properties of concrete, differential shortening is one of the main issues on super tall buildings construction. This study includes material research, which is performing as a pre design stage to solve differential shortening on Lotte Super Tower Jamsil core structure(50, 60, & 70 MPa). The major part of this study is composed with comparison and analysis between experimental data and predicted data on total shrinkage and total compliance which were used on design stage. Four models, ACI209R Model, Ba${\check{z}}$ant-Baweja B3 Model, CEB MC99 Model, & GL2000 Model, were employed to predict them. It also tries to seek a proper model for high strength and high performance concrete in the case of no concrete test.

  • PDF

An Evaluation of Elasticity Modulus and Tensile Strength of Ultra High Performance Concrete (강섬유 보강 초고성능 콘크리트의 탄성계수 및 인장강도 평가)

  • Ryu, Gum-Sung;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.206-211
    • /
    • 2015
  • Recently, for UHPC (Ulta High Performance Concrete) which is researched actively, as the tensile strength is absolutely influenced on the content of steel fiber, in this paper, experiments of compressive strength, elasticity modulus and tensile strength were performed according to compressive strength and content of steel fiber as variables. By the test results, compressive strength, elasticity modulus and tensile strength are proportioned and have a good correlation and according to content of steel fiber, compressive and tensile strength are also proportioned and have a good correlation. In case of elasticity modulus, the difference between test and present design code is not large, so it is possible to adapt to present design code. On the other hand, in case of tensile strength, as there is no specification of present design code, new prediction equation is proposed by using nonlinear regression analysis and the proposed equation have a good correlation to test results.

Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete (경량골재 콘크리트의 압축강도에 대한 시험체 기하학적 특성의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.333-340
    • /
    • 2012
  • The current study prepared 9 laboratorial concrete mixes and 3 ready-mixed concrete batches to examine the size and shape effects in compression failure of lightweight aggregate concrete (LWC). The concrete mixes were classified into three groups: normal-weight, all-lightweight and sand-lightweight concrete groups. For each concrete mix, the aspect ratio of circular or square specimens was 1.0 and 2.0. The lateral dimension of specimens varied between 50 and 150 mm for each laboratorial concrete mix, whereas it ranged from 50 to 400 mm with an incremental variation of 50 mm for each ready-mixed concrete batch. Test observations revealed that the crack propagation and width of the localized failure zone developed in lightweight concrete specimens were considerably different than those of normal-weight concrete (NWC). In LWC specimens, the cracks mainly passed through the coarse aggregate particles and the crack distribution performance was very poor. As a result, a stronger size effect was developed in LWC than in NWC. Especially, this trend was more notable in specimens with aspect ratio of 2.0 than in specimens with that of 1.0. The prediction model derived by Kim et al. overestimated the size effect of LWC when lateral dimension of specimen is above 150 mm. On the other hand, the modification factors specified in ASTM and CEB-FIP provisions, which are used to compensate for the shape effect of specimen on compressive strength, were still conservative in LWC.

Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • Results of an experimental investigation on the behavior and ultimate shear capacity of 27 reinforced concrete Transfer (deep) beams are summarized. The main variables were percent longitudinal(tension) steel (0.28 to 0.60%), percent horizontal web steel (0.60 to 2.40%), percent vertical steel (0.50to 2.25%), percent orthogonal web steel, shear span-to-depth ratio (1.10 to 3.20) and cube concrete compressive strength (32 MPa to 48 MPa).The span of the beam has been kept constant at 1000 mm with100 mm overhang on either side of the supports. The result of this study shows that the load transfer capacity of transfer (deep) beam with distributed longitudinal reinforcement is increased significantly. Also, the vertical shear reinforcement is more effective than the horizontal reinforcement in increasing the shear capacity as well as to transform the brittle mode of failure in to the ductile mode of failure. It has been observed that the orthogonal web reinforcement is highly influencing parameter to generate the shear capacity of transfer beams as well as its failure modes. Moreover, the results from the experiments have been processed suitably and presented an analytical model for design of transfer beams in high-rise buildings for estimating the shear capacity of beams.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

An Experimental Study on Development of Physical Properties and Durability of Concrete Spread with Inorganic Antibiotics (무기질 항균제 도포에 의한 콘크리트의 경화성상 및 내구성상 향상에 관한 실험적 연구)

  • Kim, Moo-Han;Khil, Bae-Su;Kim, Jae-Hwan;Cho, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.75-82
    • /
    • 2005
  • Sewage facilities are positively necessary for environment improvement such as rainwater removal, sewage disposal, preservation of the quality of water and health of the citizens in present-day. Meanwhile, a deterioration of the concrete sewer pipe is increasing rapidly due to the chemical and physical attack and especially biochemical attack that is to say biodeterioration. So, in advanced countries, prediction techniques and corrosion inhibition system for sewer concrete are developed and are being applied. Also, antibiotics were developed already but application of that is low because it is not economical and has no practical use. But, in domestic, countermeasures for the corrosion of sewage concrete are not sufficient and biochemical attack is not reflected in those essentially. In this study, to prevent biochemical corrosion of the sewer concrete, surface of the concrete was spread with liquefied inorganic antibiotics and then its engineering properties were experimentally investigated. As a result, compressive strength of the specimen spread with antibiotics were similar to those of non spread, Both bond strength and abrasion amount of the specimen spread with antibiotics were inferior to non spread. Properties of absorption and air permeability of the specimen spread with antibiotics were superior to non spread. Finally, carbonation depth, chloride ion penetration depth and weight change ration of the specimen spread with antibiotics were smaller than non spread.

Long-Term Performance Evaluation of Concrete Utilizing Oyster Shell in Lieu of Fine Aggregate (굴패각을 잔골재로 대체 사용한 콘크리트의 장기성능 평가)

  • Yang, Eun-Ik;Yi, Seong-Tae;Kim, Hak-Mo;Shim, Jae-Seol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • To evaluate the practical application of oyster shells(OS) as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells is appreciably lower than that of normal concrete. Thereby, concrete with higher oyster shell blend has the possibility of negatively influencing the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture rate increases. Namely, the modulus is reduced to approximately 10∼15% when oyster shells are blended up to 20% as the fine aggregate. The drying shrinkage strain increases with an increasing crushed oyster shells substitution rate. In addition, the existing model code of drying shrinkage and creep do not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on fleering and thawing resistance, carbonation and chemical attack of concrete. However, water permeability is considerably improved.

Simplification of the Flexural Capacity of SFR-UHPCC Rectangular Beam

  • Han, Sang-Mook;Wu, Xiang-Guo;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.526-529
    • /
    • 2006
  • In this paper, flexure behavior of steel fiber reinforcement ultra high performance cementations composites (SFR-UHPCC) has been analyzed by equivalent stress block. Pulling-out tensile force of steel fiber with concrete matrix was induced. An appropriate flexure evaluation formula, i.e. semi-analytical formula, was established based on rectangular cross section beam for comparing with shear capacity and ultimate load of SFR-UHPCC beam. Finally, the semi-analytical formula has been simplified for the convenience of design work. Experimental results and theoretical shear strength are shown to compare with the formula proposed by this paper. The theory formula has a good prediction of failure type of SFR-UHPCC.

  • PDF