• Title/Summary/Keyword: Prediction of Concrete Strength

Search Result 737, Processing Time 0.023 seconds

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.

Analysis of Factors Influencing Fire Damage to Concrete Using Nonlinear Resonance Vibration Method (비선형 공진기법을 이용한 콘크리트의 화재 손상 영향인자 분석)

  • Park, Gang-Kyu;Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.150-156
    • /
    • 2015
  • In this study, the effects of different mix proportions and fire scenarios (exposure temperatures and post-fire-curing periods) on fire-damaged concrete were analyzed using a nonlinear resonance vibration method based on nonlinear acoustics. The hysteretic nonlinearity parameter was obtained, which can sensitively reflect the damage level of fire-damaged concrete. In addition, a splitting tensile strength test was performed on each fire-damaged specimen to evaluate the residual property. Using the results, a prediction model for estimating the residual strength of fire-damaged concrete was proposed on the basis of the correlation between the hysteretic nonlinearity parameter and the ratio of splitting tensile strength.

Compressive Strength Development Model for Concrete Cured by Microwave Heating Form (마이크로웨이브 발열거푸집으로 양생된 콘크리트의 압축강도발현 모델)

  • Koh, Tae-Hoon;Moon, Do-Young;Bae, Jung-Myung;Yoo, Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.669-676
    • /
    • 2015
  • Time dependent model for prediction of compressive strength development of concrete cured by microwave heating form was presented in this study. The presented model is similar to the equation which is given in ACI 209R-92 but the constants which is dependent on cement type and curing method in the presented model are modified by the regression analysis of the experimental data. Laboratory scale concrete specimens were cast and cured by the microwave heating form and drilled cores extracted from the specimens were fractured in compression. The measured core strengths are converted to standard core and in-situ strengths. These in-situ strengths are used for the regression.

Tensile Strength of Post-Installed High-Shear Ring Anchors (HRA) After Shear Loading (전단 하중을 경험한 후설치 고전단 링앵커의 인장 강도)

  • Jeon, Sang Hyeon;Chun, Sung-Chul;Kim, Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.61-68
    • /
    • 2018
  • Tensile load tests were conducted on High-Shear Ring Anchors (HRAs) after shear load had been applied to the HRAs, which had been developed to reduce the number of the anchors. Test variables include the embedment length of the rod and the width of the specimens and a total of 12 specimens were tested. Test results show that the HRAs pulled out due to bond failure or steel failure occurred in case that the HRAs were installed to the members with 300mm or greater width and the embedment length of 160mm (the actual embedment of rod is 140mm) or deeper. Except 4 HRAs showing steel failure of rod, the minimum and average of test-to-prediction by ACI 318-14 ratios are 1.18 and 1.79, respectively. The tensile strength of HRAs, after shear load was applied to the HRAs, can be safely evaluated by the minimum among the concrete breakout strength and bond strength with the actual embedment length of the rod.

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

A Proposed method of the Strength Calculation of Pipe Support (파이프 서포트의 내력 산정 방안)

  • 이영욱;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Even though there is a guideline for the required strength of pipe support in inspection, it does not mean the nominal strength which can be used for the form work design. And, Concrete Specification defines that the pipe support should be designed according to the steel design guidelines but the design details are not provided, such as buckling length and the sectional modulus, etc. For the better prediction of strength of pipe support, the slenderness ratio of support which reflects the boundary condition should be considered. In this paper, the elastic buckling formula based on the slenderness is derived. The formula contains the strength reduction factor that consider the strength deduction caused by initial lateral deformation and is 0.65 consistently regardless of boundary conditions. And the coefficient of effective buckling length is calculated from the experiment.

  • PDF

A Proposal of Durability Prediction Models and Development of Effective Tunnel Maintenance Method Through Field Application (내구성 예측식의 제안 및 현장적용을 통한 효율적인 터널 유지관리 기법의 개발)

  • Cho, Sung Woo;Lee, Chang Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.148-160
    • /
    • 2012
  • This study proposed more reasonable prediction models on compressive strength and carbonation of concrete structure and developed a more effective tunnel safety diagnosis and maintenance method through field application of the proposed prediction models. For this study, the Seoul Metro's Line 1 through Line 4 were selected as target structures because they were built more than 30 years ago and have accumulated numerous diagnosis and maintenance data for about 15 years. As a result of the analysis of compressive strength and carbonation, we were able to draw prediction models with accuracy of more than 80% and confirmed the prediction model's reliability by comparing it with the existing models. We've also confirmed field suitability of the prediction models by applying field, the average error of an estimate on compressive strength and carbonation depth was about 20%, which showed an accuracy of more than 80%. We developed a more effective maintenance method using durability prediction Map before field inspection. With the durability prediction Map, diagnostic engineers and structure managers can easily detect the vulnerable points, which might have failed to reach the standard of designed strength or have a high probability of corrosion due to carbonation, therefore, it is expected to make it possible for them to diagnose and maintain tunnels more effectively and efficiently.

A Study on the Early Prediction of Concrete Strength by Refrigeration Curing (냉동양생에 의한 레미콘 강도 조기판정 연구)

  • 조일호;신무섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.114-121
    • /
    • 1996
  • This study presented a simple test method of early decision on the quality of concrete by the way of refrigeration curing. It is a method of early decision for the quality of hardened concrete, after 28days, through the using refrigeration curing, at -18$\pm$$3^{\cire}C$ for five hours. I could find that there were fixed connections between the solidities after 28days and 48days, by the test of compression on the Re-Mi-Con through the test of standard curing and refergeration curing. (F = 1.02X + 13, $r^2$ = 0.964, S = 10.6kg/$\textrm{cm}^2$) I except that we can reduce the mistakes of construction work by forecasting the quality through the refrigeration curing.

  • PDF

An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs (부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구)

  • 박홍용;연준희;최익창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

Differential Column Shortening of Plaza zrakyat Office Tower Including Inelastic Effect (비산성효과를 고려한 Plaza Rakyat 오피스동의 기둥부등축소량)

  • 송화철;유은종;정석창;주영규;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.475-480
    • /
    • 1997
  • Highrise concrete buildings are very sensitive to cumulative and differential shortening of their vertical element such as wall and columns. Inelastic deformation due to creep and shrinkage consist of various factors and load history af actual building is very complicated. Therefore, for the accurate prediction and compensation of axial shortening, special efforts in design and construction phase are required to ensure long-term serviceability and strength requirement. In this paper, axial shortening estimation and compensation procedure is presented, which utilized experimentally determined concrete properties and preliminary load history and computerized approach, in case of Plaza Rakyat office tower, 79-story reinforced concrete building under construction in Malaysia.

  • PDF