• Title/Summary/Keyword: Prediction Uncertainty

검색결과 428건 처리시간 0.035초

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.

Prediction Model of Final Project Cost using Multivariate Probabilistic Analysis (MPA) and Bayes' Theorem

  • Yoo, Wi Sung;Hadipriono, FAbian C.
    • 한국건설관리학회논문집
    • /
    • 제8권5호
    • /
    • pp.191-200
    • /
    • 2007
  • This paper introduces a tool for predicting potential cost overrun during project execution and for quantifying the uncertainty on the expected project cost, which is occasionally changed by the unknown effects resulted from project's complications and unforeseen environments. The model proposed in this stuff is useful in diagnosing cost performance as a project progresses and in monitoring the changes of the uncertainty as indicators for a warning signal. This model is intended for the use by project managers who forecast the change of the uncertainty and its magnitude. The paper presents a mathematical approach for modifying the costs of incomplete work packages and project cost, and quantifying reduced uncertainties at a consistent confidence level as actual cost information of an ongoing project is obtained. Furthermore, this approach addresses the effects of actual informed data of completed work packages on the re-estimates of incomplete work packages and describes the impacts on the variation of the uncertainty for the expected project cost incorporating Multivariate Probabilistic Analysis (MPA) and Bayes' Theorem. For the illustration purpose, the Introduced model has employed an example construction project. The results are analyzed to demonstrate the use of the model and illustrate its capabilities.

ANALYSIS OF UNCERTAINTY QUANTIFICATION METHOD BY COMPARING MONTE-CARLO METHOD AND WILKS' FORMULA

  • Lee, Seung Wook;Chung, Bub Dong;Bang, Young-Seok;Bae, Sung Won
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.481-488
    • /
    • 2014
  • An analysis of the uncertainty quantification related to LBLOCA using the Monte-Carlo calculation has been performed and compared with the tolerance level determined by the Wilks' formula. The uncertainty range and distribution of each input parameter associated with the LOCA phenomena were determined based on previous PIRT results and documentation during the BEMUSE project. Calulations were conducted on 3,500 cases within a 2-week CPU time on a 14-PC cluster system. The Monte-Carlo exercise shows that the 95% upper limit PCT value can be obtained well, with a 95% confidence level using the Wilks' formula, although we have to endure a 5% risk of PCT under-prediction. The results also show that the statistical fluctuation of the limit value using Wilks' first-order is as large as the uncertainty value itself. It is therefore desirable to increase the order of the Wilks' formula to be higher than the second-order to estimate the reliable safety margin of the design features. It is also shown that, with its ever increasing computational capability, the Monte-Carlo method is accessible for a nuclear power plant safety analysis within a realistic time frame.

Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation

  • Spiridonakos, Minas D.;Chatzia, Eleni N.
    • Earthquakes and Structures
    • /
    • 제8권4호
    • /
    • pp.915-934
    • /
    • 2015
  • Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.

공동주택 침기의 불확실성 분석 (Infiltration in Residential Buildings under Uncertainty)

  • 현세훈;박철수;문현준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.369-374
    • /
    • 2006
  • Quantification of infiltration rate is an important issue in HVAC system design. The infiltration in buildings depends on many uncertain parameters that vary with significant magnitude and hence, the results from standard deterministic simulation approach can be unreliable. The authors utilize uncertainty analysis In predicting the airflow rates. The paper presents relevant uncertain parameters such as meteorological data, building parameters (leakage areas of windows, doors, etc.), etc. Uncertainties of the aforementioned parameters are quantified based on available data from literature. Then, the Latin Hypercube Sampling (LHS) method was used for the uncertainty propagation. The LHS is one of the Monte Carlo simulation techniques that is suited for our needs. The CONTAMW was chosen to simulate infiltration phenomena in a residential apartment that is typical of residential buildings in Korea. It will be shown that the uncertainty propagating through this process is not negligible and may significantly influence the prediction of the airflow rates.

  • PDF

인천송도신도시 풍화토층 출현심도의 국부적 불확실성 (Local Uncertainty of the Depth to Weathered Soil at Incheon Songdo New City)

  • 김동휘;고성권;이우진
    • 한국지반공학회논문집
    • /
    • 제28권11호
    • /
    • pp.5-16
    • /
    • 2012
  • 일부 지점에서 수행된 시추조사결과를 이용하여 미조사구간의 지층분포를 추정하는 경우, 예측하고자 하는 변수들의 공간적인 분포 추정뿐만 아니라 추정결과에 수반되는 불확실성을 정량적으로 평가하는 것도 중요하다. 본 논문에서는 송도신도시 풍화토층 출현심도 추정결과의 국부적 불확실성을 지시자 방법을 이용하여 평가하였다. 지시자 방법을 이용하여 작성한 각 위치에서의 조건부 누적분포함수의 평균을 이용하여 송도신도시 풍화토층 출현심도의 공간적 분포를 추정하였다. 또한, 조건부 누적분포함수와 손실함수를 이용하여 송도신도시의 최적 풍화토층 출현심도를 결정하였다. 본 논문에서 이용한 손실함수를 고려할 수 있는 설계방법이 지반공학분야에도 잘 적용될 수 있음을 확인하였다.

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).

고무의 피로 수명 예측을 위한 찢김에너지 수식화 (Estimation of Tearing Energy for Fatigue Life Prediction of Rubber Material)

  • 김호;김헌영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.172-177
    • /
    • 2004
  • Fatigue life prediction is based on fracture mechanics and database which is established from experimental method. Rubber material also uses the same way for fatigue life prediction. But the absence of standardization of rubber material, various way of composition by each rubber company and uncertainty of fracture criterion makes the design of fatigue life by experimental method almost impossible. Tearing energy which has its origin in energy release rate is evaluated as fracture criterion of rubber material and the applicability of fatigue life prediction method are considered. The system of measuring tearing energy using the principal of virtual crack extension method and fatigue life prediction by the minimum number of experiments are proposed.

  • PDF

Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine

  • Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.379-390
    • /
    • 2018
  • In this paper, a novel and effective damage diagnosis algorithm is proposed to detect and estimate damage using two stages least squares support vector machine (LS-SVM) and limited number of attached sensors on structures. In the first stage, LS-SVM1 is used to predict the unmeasured mode shapes data based on limited measured modal data and in the second stage, LS-SVM2 is used to predicting the damage location and severity using the complete modal data from the first-stage LS-SVM1. The presented methods are applied to a three story irregular frame and cantilever plate. To investigate the noise effects and modeling errors, two uncertainty levels have been considered. Moreover, the performance of the proposed methods has been verified through using experimental modal data of a mass-stiffness system. The obtained damage identification results show the suitable performance of the proposed damage identification method for structures in spite of different uncertainty levels.