Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)
-
- Korean Journal of Remote Sensing
- /
- v.38 no.6_2
- /
- pp.1723-1735
- /
- 2022
Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.
Rock mass classification results have a great influence on construction schedule and budget as well as tunnel stability in tunnel design. A total of 3,526 tunnels have been constructed in Korea and the associated techniques in tunnel design and construction have been continuously developed, however, not many studies have been performed on how to assess rock mass quality and grade more accurately. Thus, numerous cases show big differences in the results according to inspectors' experience and judgement. Hence, this study aims to suggest a more reliable rock mass classification (RMR) model using machine learning algorithms, which is surging in availability, through the analyses based on various rock and rock mass information collected from boring investigations. For this, 11 learning parameters (depth, rock type, RQD, electrical resistivity, UCS, Vp, Vs, Young's modulus, unit weight, Poisson's ratio, RMR) from 13 local tunnel cases were selected, 337 learning data sets as well as 60 test data sets were prepared, and 6 machine learning algorithms (DT, SVM, ANN, PCA & ANN, RF, XGBoost) were tested for various hyperparameters for each algorithm. The results show that the mean absolute errors in RMR value from five algorithms except Decision Tree were less than 8 and a Support Vector Machine model is the best model. The applicability of the model, established through this study, was confirmed and this prediction model can be applied for more reliable rock mass classification when additional various data is continuously cumulated.
Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.
The objective of our study is to provide an exploratory model for forecasting sales take-off timing of a product in the context of multi-national markets. We evaluated the usefulness of key predictors such as multiple market information, product attributes, price, and sales for the forecasting of sales take-off timing by applying the suggested model to monthly sales data for PDP and LCD TV provided by a Korean electronics manufacturer. We have found some important results for global companies from the empirical analysis. Firstly, innovation coefficients obtained from sales data of a particular product in other markets can provide the most useful information on sales take-off timing of the product in a target market. However, imitation coefficients obtained from the sales data of a particular product in the target market and other markets are not useful for sales take-off timing of the product in the target market. Secondly, price and product attributes significantly influence on take-off timing. It is noteworthy that the ratio of the price of the target product to the average price of the market is more important than the price ofthe target product itself. Lastly, the cumulative sales of the product are still useful for the prediction of sales take-off timing. Our model outperformed the average model in terms of hit-rate.
Persistent droughts due to climate change will intensify water shortage problems in Korea. According to the 1st National Water Management Plan, the shortage of domestic and industrial waters is projected to be 0.07 billion m3/year under a 50-year drought event. A long-term prediction of water demand is essential for effectively responding to water shortage problems. Unlike industrial water, which has a relatively constant monthly usage, domestic water is analyzed on monthly basis due to apparent monthly usage patterns. We analyzed monthly water usage patterns using water usage data from 2017 to 2021 in Chungcheong, South Korea. The monthly water usage rate was calculated by dividing monthly water usage by annual water usage. We also calculated the water distribution rate considering correlations between water usage rate and climate variables. The division method that divided the monthly water usage rate by monthly average temperature resulted in the smallest absolute error. Using the division method with average temperature, we calculated the water distribution rates for the Chungcheong region. Then we predicted future water usage rates in the Chungcheong region by multiplying the average temperature of the SSP5-8.5 scenario and the water distribution rate. As a result, the average of the maximum water usage rate increased from 1.16 to 1.29 and the average of the minimum water usage rate decreased from 0.86 to 0.84, and the first quartile decreased from 0.95 to 0.93 and the third quartile increased from 1.04 to 1.06. Therefore, it is expected that the variability in monthly water usage rates will increase in the future.
Purpose : To identify the necessity of more reasonable diagnostic criteria and the possibility of early prediction of coronary involvement in the higher risk group, we investigated and compared clinical and laboratory findings in the acute phase and coronary involvements in those younger (n=17) and older(n=53) than one year of age in Kawasaki disease(KD). Methods : Retrospective chart reviews were performed on 70 patients with KD who were admitted to the Chung-Ang University Hospital from April 1997 to May 2001. Results : Male were significantly higher in the younger age group(M : F ratio 3.3 : 1 vs. 1.0 : 1, P=0.004). Fever durations before intravenous immunoglobulin(IVIG) and echocardiography were significantly shorter in the younger group(
The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)(
The characteristics of the rock cleavage in Jurassic granite from Geochang were analysed. The evaluation for three quarrying planes and three rock cleavages was performed using the parameters such as (1) reduction ratio between the value of spacing and the value of length, (2) microcrack spacing frequency(N), (3) total spacing(
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70