• Title/Summary/Keyword: Prediction Algorithms

Search Result 1,034, Processing Time 0.024 seconds

A New Channel Reservation Scheme for Soft Handoff Algorithms in Wireless Networks (무선망에서 소프트 핸드오프 알고리즘을 위한 새로운 대역폭 예약 기법)

  • Kwon Se-Dong;Park Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.701-708
    • /
    • 2005
  • The mobility prediction algorithm and the channel reservation scheme have been reported as an effective means to provide QoS guarantees and the efficient resource reservation in wireless networks. Among these prediction algorithms, the recently proposed Detailed-ZMHB algorithm makes use of the history of the user's positions within the current cell to predict the next cell, which provides the better prediction accuracy than the others. The handoff prioritizing schemes are proposed to provide improved performance at the expense of an increase in the blocking probability of new calls. In the soft handoff of the CDMA systems, a mobile can communicate via two adjacent cells simultaneously for a while before the actual handoff takes place. In this paper, we propose a new channel reservation scheme making use of the user mobility pattern information in order to reduce the call dropping probability. Our results show that the proposed scheme gives about 67.5-71.1$\%$ lower call dropping probability, compared to the existing scheme.

Sub-Sampled Pixels based Fast Mode Selection Algorithm for Intra Prediction in H.264/AVC (H.264/AVC 화면 내 예측을 위한 서브 샘플링 된 화소 기반 고속 모드 선택 기법)

  • Kim, Young-Joon;Kim, Won-Kyun;Jung, Dong-Jin;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.471-479
    • /
    • 2012
  • Intra prediction is one of the significant techniques in H.264/AVC reference software; however, it has heavy computational complexity. In order to solve this problem, many fast algorithms have been proposed. In this paper, we propose a fast intra mode decision algorithm which predicts the edge direction of the current block using sub-sampled pixels to reduce high computational complexity of the H.264/AVC encoder. The proposed algorithm shows that it not only improves the coding performance but also reduces the computational complexity of the H.264/AVC encoder compared to previous algorithms. The experimental results show that the proposed algorithm achieves the encoding time reduction of 75.93% on an average with slight peak signal-to-noise ratio (PSNR) drop and bit-rate increment.

Fast Mode Decision in H.264/AVC Using Adaptive Selection of Reference Frame and Selective Intra Mode (다중 참조 영상의 적응적 선택 및 선택적 인트라 모드를 이용한 H.264/AVC의 고속 모드 결정 방법)

  • Lee Woong-Ho;Lee Jung-Ho;Cho Ik-Hwan;Jeong Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.271-278
    • /
    • 2006
  • Rate-constrained coding is one of the many coding-efficiency oriented tools of H.264/AVC, but mode decision process of RDO(Rate distortion optimization) requires high computational complexity. Many fast mode decision algorithms have been proposed to reduce the computational complexity of mode decision. In this paper, we propose two algorithms for reduction of mode decision in H.264/AVC, which are the fast reference frame selection and selective intra prediction mode decision. Fast reference frame selection is efficient for inter predication and selective intra prediction mode decision can effectively reduce excessive calculation load of intra prediction mode decision. The simulation results showed that the proposed methods could reduce the encoding time of the overall sequences by 44.63% on average without any noticeable degradation of the coding efficiency.

Context-Awareness Modeling Method using Timed Petri-nets (시간 페트리 넷을 이용한 상황인지 모델링 기법)

  • Park, Byung-Sung;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.354-361
    • /
    • 2011
  • Increasing interest and technological advances in smart home has led to active research on context-awareness service and prediction algorithms such as Bayesian Networks, Tree-Dimensional Structures and Genetic prediction algorithms. Context-awareness service presents that providing automatic customized service regarding individual user's pattern surely helps users improve the quality of life. However, it is difficult to implement context-awareness service because the problems are that handling coincidence with context information and exceptional cases have to consider. To overcome this problem, we proposes an Intelligent Sequential Matching Algorithm(ISMA), models context-awareness service using Timed Petri-net(TPN) which is petri-net to have time factor. The example scenario illustrates the effectiveness of the Timed Petri-net model and our proposed algorithm improves average 4~6% than traditional in the accuracy and reliability of prediction.

Comparative Analysis of the Binary Classification Model for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 이진 분류 모델 비교 분석)

  • Jung, Yong-Jin;Lee, Jong-Sung;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • High forecast accuracy is required as social issues on particulate matter increase. Therefore, many attempts are being made using machine learning to increase the accuracy of particulate matter prediction. However, due to problems with the distribution of imbalance in the concentration and various characteristics of particulate matter, the learning of prediction models is not well done. In this paper, to solve these problems, a binary classification model was proposed to predict the concentration of particulate matter needed for prediction by dividing it into two classes based on the value of 80㎍/㎥. Four classification algorithms were utilized for the binary classification of PM10. Classification algorithms used logistic regression, decision tree, SVM, and MLP. As a result of performance evaluation through confusion matrix, the MLP model showed the highest binary classification performance with 89.98% accuracy among the four models.

Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques (시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측)

  • Han, Min Soo;Yu, Song Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

Cryptocurrency Auto-trading Program Development Using Prophet Algorithm (Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

A Novel Prediction-based Spectrum Allocation Mechanism for Mobile Cognitive Radio Networks

  • Wang, Yao;Zhang, Zhongzhao;Yu, Qiyue;Chen, Jiamei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2101-2119
    • /
    • 2013
  • The spectrum allocation is an attractive issue for mobile cognitive radio (CR) network. However, the time-varying characteristic of the spectrum allocation is not fully investigated. Thus, this paper originally deduces the probabilities of spectrum availability and interference constrain in theory under the mobile environment. Then, we propose a prediction mechanism of the time-varying available spectrum lists and the dynamic interference topologies. By considering the node mobility and primary users' (PUs') activity, the mechanism is capable of overcoming the static shortcomings of traditional model. Based on the mechanism, two prediction-based spectrum allocation algorithms, prediction greedy algorithm (PGA) and prediction fairness algorithm (PFA), are presented to enhance the spectrum utilization and improve the fairness. Moreover, new utility functions are redefined to measure the effectiveness of different schemes in the mobile CR network. Simulation results show that PGA gets more average effective spectrums than the traditional schemes, when the mean idle time of PUs is high. And PFA could achieve good system fairness performance, especially when the speeds of cognitive nodes are high.