Given the significant social and economic impact caused by heat waves, there is a pressing need to predict them with high accuracy and reliability. In this study, we analyzed the real-time forecast data from six models constituting the Subseasonal-to-Seasonal (S2S) prediction project, to elucidate the key mechanisms contributing to the prediction of the recent record-breaking Korean heat wave event in 2018. Weekly anomalies were first obtained by subtracting the 2017-2020 mean values for both S2S model simulations and observations. By comparing four Korean heat-wave-related indices from S2S models to the observed data, we aimed to identify key climate processes affecting prediction accuracy. The results showed that superior performance at predicting the 2018 Korean heat wave was achieved when the model showed better prediction performance for the anomalous anticyclonic activity in the upper troposphere of Eastern Europe and the cyclonic circulation over the Western North Pacific (WNP) region compared to the observed data. Furthermore, the development of upper-tropospheric anticyclones in Eastern Europe was closely related to global warming and the occurrence of La Niña events. The anomalous cyclonic flow in the WNP region coincided with enhancements in Madden-Julian oscillation phases 4-6. Our results indicate that, for the accurate prediction of heat waves, such as the 2018 Korean heat wave, it is imperative for the S2S models to realistically reproduce the variabilities over the Eastern Europe and WNP regions.
International Journal of Control, Automation, and Systems
/
제3권4호
/
pp.509-523
/
2005
We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.
본 논문에서는 파이프라인 프로세서의 분기 명령어 처리 성능 향상을 목적으로, BTB의 미스율을 줄이고 분기 예측의 정확도를 개선하기 위해 victim cache를 활용한 2-단계 BTB 구조를 제안한다. 2-단계 BTB는 기존의 BTB에 작은 크기의 victim BTB를 추가한 구조로, 적은 비용으로 BTB 미스율을 개선하고, 동적 예측(dynamic prediction)과 정적 예측 (static prediction)이 함께 사용되는 기존의 통합 분기 예측(Hybrid Branch Prediction) 구조의 예측 정확도를 높이도록 운영된다. 본 논문에서 제안된 2-단계 BTB에 의한 성능 개선을 4개 벤치마크 프로그램에 대한 trace-driven 시뮬레이션을 통해 검증한 결과, 기존의 BTB에 비해 2.5∼8.5%의 비용 증가로 BTB 미스율이 26.5% 개선되고, 기존의 gshare에 비해 64%의 비용 증가로 예측 정확도는 26.75% 개선되었다.
본 논문에서는 CELP (Code Excited Linear Prediction) 부호화기의 장구간 예측단에 MBE(Multi-Band Excitation) 방법을 도입하여 4.8kbps 이하의 낮은 전송률에서 성능을 향상시키는 방법을 제안한다. 제안한 방법에서는 기존의 CELP 방법으로 장구간 예측을 한 후에도 여전히 남아 있는 주기적 성분들을 다시 한번 다중대역(multiband)으로 장구간 예측을 한다. 이때 전 스펙트럼을 기본 주파수의 하모닉 간격으로 대역 분할하고, 주기적 다중대역 여기 신호는 각 대역 내의 하모닉들에서 여기 신호 스펙트럼과 근사한 크기를 갖는 정현파 (sine wave)의 합으로 표현함으로써 실제 여기 신호의 특성을 잘 반영하도록 한다. 제안된 방법의 성능 평가를 위해서 4.8 kbps의 전송률에서 컴퓨터 모의 실험을 하였다. 음질 평가의 비교 기준 대상으로 4.8 kbps DoD CELP와 4.4 kbps IMBE를 선정하여 주관적인 음질 평가를 실시한 결과 4.8 kbps DoD CELP보다 우수하였고, 4.4 kbps IMBE와는 비슷하였다.
A fast intra skip detection algorithm based on the ratedistortion (RD) cost for an inter frame (P-slices) is proposed for H.264/AVC video encoding. In the H.264/AVC coding standard, a robust rate-distortion optimization technique is used to select the best coding mode and reference frame for each macroblock (MB). There are three types of intra predictions according to profiles. These are $16{\times}16$ and $4{\times}4$ intra predictions for luminance and an $8{\times}8$ intra prediction for chroma. For the high profile, an $8{\times}8$ intra prediction has been added for luminance. The $4{\times}4$ prediction mode has 9 prediction directions with 4 directions for $16{\times}16$ and $8{\times}8$ luma, and $8{\times}8$ chrominance. In addition to the inter mode search procedure, an intra mode search causes a significant increase in the complexity and computational load for an inter frame. To reduce the computational load of the intra mode search at the inter frame, the RD costs of the neighborhood MBs for the current MB are used and we propose an adaptive thresholding scheme for the intra skip extraction. We verified the performance of the proposed scheme through comparative analysis of experimental results using joint model reference software. The overall encoding time was reduced up to 32% for the IPPP sequence type and 35% for the IBBPBBP sequence type.
본 연구에서는 남한영역에 대하여 1 km 고해상도의 계절예측 기온자료를 생산하고, 생산된 예측자료의 성능을 높이는 새로운 방법을 제안하였다. 이 새로운 방법은 총 4가지 단계의 실험으로 구성되어 있다. 첫 번째 단계인 EXP1은 PNU CGCM에서 생산된 저해상도 계절예측 기온자료이며, EXP2는 EXP1의 결과에 역거리 가중법을 적용하여 생산된 남한영역의 1 km 고해상도 계절예측 기온자료이다. EXP3는 EXP2의 결과에서 위성고도자료인 ASTER GDEM을 이용하여 고도에 따른 기온변화를 추정한 후 이를 적용한 계절예측 기온자료이다. 마지막으로 EXP4는 EXP3의 결과에 유전자 알고리즘을 적용하여 모형의 예측결과 내 존재하는 계통적 오차를 보정한 결과이다. EXP1과 EXP2는 남한의 지형적 특성이 전혀 고려되지 않아 다른 실험에 비해 낮은 예측성을 보였으며, 특히 고도가 높은 관측지점에서 두 실험의 예측 성능이 더욱 낮았다. 반면, 위성에서 관측된 고해상도 고도자료가 적용된 EXP3와 EXP4는 고도가 증가함에 따라 기온이 감소하는 특징 등 지형적 특성을 효과적으로 표현하면서 높은 예측성능을 보였다. 특히, 유전자 알고리즘으로 예측값의 계통적 오차가 감소된 EXP4는 다른 실험과 비교하여 시간상관성, 관측으로 정규화된 표준편차, 정답률, 오답률 등 시간에 따른 변동성에 대해서 가장 높은 예측성능을 보였다. 이는 본 연구에서 제안한 새로운 방법을 통해 고해상도 격자의 질 높은 실시간 계절예보 자료를 효과적으로 생산할 수 있음을 의미한다.
H.264 비디오 부호화 표준 방식은 널리 사용되고 있지만, 고화질 비디오의 해상도에 비해 상대적으로 작은 크기의 매크로블록을 사용하기 때문에 고화질 비디오를 부호화하는데 한계가 있다. 본 논문에서는 고화질 비디오 부호화를 위해 기존의 매크로블록의 크기를 확장하고, 확장된 매크로블록을 기반으로 새로운 화면내 부호화 방법을 제안한다. 휘도 신호의 경우, 기존의 인트라 $4{\times}4$ 예측과 인트라 $16{\times}16$ 예측을 각각 인트라 $8{\times}8$ 예측과 인트라 $32{\times32}$ 예측으로 확장한다. 색차 신호의 경우에는, 인트라 ${8\times}8$ 예측을 인트라 $16{\times}16$ 예측으로 확장한다. 또한 매크로블록의 확장으로 기본 부호화 블록의 크기가 $8{\times}8$로 커짐에 따라, $8{\times}8$ 정수 이산 코사인 변환을 사용한다. 이 논문에서 제안한 방법을 사용하여 고화질 비디오를 부호화 할 경우, 기존의 방법에 비해 약 5.32% 정도 비트수가 감소했으며 약 0.23dB 정도 화질이 개선되었다.
본 논문에서 우리는 선박의 이동 경로를 예측하기 위하여, 해상 영역을 분할하고, 분할된 영역을 기반으로 선박의 목적지를 예측하는 방법을 제안한다. 해상 영역을 분할하기 위하여 과거 이동 경로를 토대로 생성된 목적지 후보들을 군집화한다. 그리고, 선박이 이동할 목적지 영역을 예측하기 위해서 현재 위치에서 주어진 경로의 선형 여부와 향후 예측 시간에 따른 불확실성에 따라 다른 예측 방법을 적용한다. 예측에 사용하는 방법에는 선형 영역에서는 등속 운동을 가정한 선형 예측 방법, 불확실성이 높은 비선형 영역에서는 과거 경로 중 유사한 경로와 비슷한 움직임을 보일 것이라고 가정한 유사 경로 이용 예측 방법을 사용한다. 실험 결과에서 해당 방법이 선형 예측, 유사 경로 이용 예측 방법을 단독으로 적용하는 것에 비해 더 우수함을 보인다.
본 논문에서는 최신 압축 기술인 H.264/AVC의 화면내 부호화 효율을 향상시키기 위해 1차원 및 2차원 정수 변환을 이용한 적응적 화면내 부호화 기법을 제안한다. 제안 기법에서는 부호화될 블록에 대해 예측모드에 따라서 1차원 정수 변환과 2차원 정수 변환을 수행한 후 가장 효과적인 예측모드와 정수 변환 방법이 선택된다. 1차원 정수 변환을 이용한 부호화를 수행할 경우에는 먼저 예측모드에 따라 $4{\times}4$ 블록을 $1{\times}4$ 또는 $4{\times}1$의 서브블록으로 분할하고, 각각의 서브블록에 대해 예측을 수행한다. 이때 서브블록들에 대한 예측 신호는 이전의 재생된 서브블록을 이용하여, 예측 방향으로 가장 가까운 신호를 예측에 사용함으로써, 상관성의 활용을 극대화한다. 각각의 서브블록들은 생성된 예측 신호와의 뺄셈 과정을 통해 잔여신호를 생성하고, 1차원 정수 변환 및 양자화 과정을 통해 양자화된 신호를 생성한다. 양자화된 서브블록들은 다시 분할되기 이전의 $4{\times}4$ 블록 단위로 합쳐지고, 예측모드에 따라 DC에 우선 순위를 둔 스캐닝 패턴을 이용하여 1차원으로 정렬된다. 1차원 정수 변환을 사용하여 생성된 해당 블록의 비트스트림이 기존 2차원 정수 변환을 사용하여 생성한 비트스트림과 부호화 효율 측면에서 비교되어, 최종적으로 부호화될 예측모드와 변환 계수가 선택되어 전송된다. 제안 기술은 실험 결과를 통해 다양한 영상과 비트율에서 H.264/AVC보다 평균적으로 BD-PSNR을 0.34dB 향상 또는 BD-bitrate를 4.03% 감소시킴으로써, 기존의 H.264/AVC 부호화 효율을 크게 개선할 수 있음을 보여준다.
The prediction of the emission concentrations in 4-cycle 4-cylinder spark ignition engine is made by considering the model with the extended Zedovich mechanism. The predicted values for nitric oxide, carbon dioxide and carbon monoxide agree with the experimentally measured ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.