DOI QR코드

DOI QR Code

A Study on the Method of Producing the 1 km Resolution Seasonal Prediction of Temperature Over South Korea for Boreal Winter Using Genetic Algorithm and Global Elevation Data Based on Remote Sensing

위성고도자료와 유전자 알고리즘을 이용한 남한의 겨울철 기온의 1 km 격자형 계절예측자료 생산 기법 연구

  • Lee, Joonlee (Division of Earth Environmental System, Pusan National University) ;
  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University) ;
  • Jung, Myung-Pyo (Climate Change and Agroecology Division, Department of Agricultural Environment, National Institute of Agricultural Science, Rural Development) ;
  • Shim, Kyo-Moon (Climate Change and Agroecology Division, Department of Agricultural Environment, National Institute of Agricultural Science, Rural Development)
  • 이준리 (부산대학교 지구환경시스템학부) ;
  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 정명표 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과) ;
  • 심교문 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과)
  • Received : 2017.08.25
  • Accepted : 2017.09.20
  • Published : 2017.10.30

Abstract

This study suggests a new method not only to produce the 1 km-resolution seasonal prediction but also to improve the seasonal prediction skill of temperature over South Korea. This method consists of four stages of experiments. The first stage, EXP1, is a low-resolution seasonal prediction of temperature obtained from Pusan National University Coupled General Circulation Model, and EXP2 is to produce 1 km-resolution seasonal prediction of temperature over South Korea by applying statistical downscaling to the results of EXP1. EXP3 is a seasonal prediction which considers the effect of temperature changes according to the altitude on the result of EXP2. Here, we use altitude information from ASTER GDEM, satellite observation. EXP4 is a bias corrected seasonal prediction using genetic algorithm in EXP3. EXP1 and EXP2 show poorer prediction skill than other experiments because the topographical characteristic of South Korea is not considered at all. Especially, the prediction skills of two experiments are lower at the high altitude observation site. On the other hand, EXP3 and EXP4 applying the high resolution elevation data based on remote sensing have higher prediction skill than other experiments by effectively reflecting the topographical characteristics such as temperature decrease as altitude increases. In addition, EXP4 reduced the systematic bias of seasonal prediction using genetic algorithm shows the superior performance for temporal variability such as temporal correlation, normalized standard deviation, hit rate and false alarm rate. It means that the method proposed in this study can produces high-resolution and high-quality seasonal prediction effectively.

본 연구에서는 남한영역에 대하여 1 km 고해상도의 계절예측 기온자료를 생산하고, 생산된 예측자료의 성능을 높이는 새로운 방법을 제안하였다. 이 새로운 방법은 총 4가지 단계의 실험으로 구성되어 있다. 첫 번째 단계인 EXP1은 PNU CGCM에서 생산된 저해상도 계절예측 기온자료이며, EXP2는 EXP1의 결과에 역거리 가중법을 적용하여 생산된 남한영역의 1 km 고해상도 계절예측 기온자료이다. EXP3는 EXP2의 결과에서 위성고도자료인 ASTER GDEM을 이용하여 고도에 따른 기온변화를 추정한 후 이를 적용한 계절예측 기온자료이다. 마지막으로 EXP4는 EXP3의 결과에 유전자 알고리즘을 적용하여 모형의 예측결과 내 존재하는 계통적 오차를 보정한 결과이다. EXP1과 EXP2는 남한의 지형적 특성이 전혀 고려되지 않아 다른 실험에 비해 낮은 예측성을 보였으며, 특히 고도가 높은 관측지점에서 두 실험의 예측 성능이 더욱 낮았다. 반면, 위성에서 관측된 고해상도 고도자료가 적용된 EXP3와 EXP4는 고도가 증가함에 따라 기온이 감소하는 특징 등 지형적 특성을 효과적으로 표현하면서 높은 예측성능을 보였다. 특히, 유전자 알고리즘으로 예측값의 계통적 오차가 감소된 EXP4는 다른 실험과 비교하여 시간상관성, 관측으로 정규화된 표준편차, 정답률, 오답률 등 시간에 따른 변동성에 대해서 가장 높은 예측성능을 보였다. 이는 본 연구에서 제안한 새로운 방법을 통해 고해상도 격자의 질 높은 실시간 계절예보 자료를 효과적으로 생산할 수 있음을 의미한다.

Keywords

References

  1. Ahn, J.B., and J.A. Lee, 2001. Numerical Study on the Role of Sea-ice Using Ocean General Circulation Model, Atmosphere, 6(4): 225-233 (in Korean with English abstract).
  2. Ahn, J.B., J.L. Lee, and E.S. Im, 2012. The reproducibility of surface air temperature over South Korea using dynamical downscaling and statistical correction, Journal of Meteorological Society Japan, 90(4): 493-507. https://doi.org/10.2151/jmsj.2012-404
  3. Ahn, J.B., J. Hur, and A.Y. Lim, 2014. Estimation of fine-scale daily temperature with 30 m-resolution using PRISM, Atmosphere, 24(1): 101-110 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2014.24.1.101
  4. Ahn, J.B. and J.L. Lee, 2015. Comparative Study on the Seasonal Predictability Dependency of Boreal Winter 2m Temperature and Sea Surface Temperature on CGCM Initial Conditions, Atmosphere, 25(2): 353-366 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.353
  5. Ahn, J.B. and J.L. Lee, 2016. A new multimodel ensemble method using nonlinear genetic algorithm: An application to boreal winter surface air temperature and precipitation prediction, Journal of Geophysical Research, 121(16): 9263-9277. https://doi.org/10.1002/2016JD025151
  6. Ahrens, C.D., 2012. Meteorology today: An introduction to weather, climate, and the environment, Cengage Learning, California, USA.
  7. Barnes, S.L., 1964. A technique for maximizing details in numerical weather map analysis, Journal of Applied Meteorology and Climatology, 3(4): 396-409. https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
  8. Bonan, G.B., 1998. The land surface climatology of the NCAR Land Surface Model (LSM 1.0) coupled to the NCAR Community Climate Model (CCM3), Journal of Climate, 11: 1307-1326. https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  9. Brankovic, C., T.N. Palmer, F. Molteni, S. Tibaldi, and U. Cubasch, 1990. Extended-range predictions with ECMWF models: Time-lagged ensemble forecasting, Quarterly Journal of the Royal Meteorological Society, 116(494): 867-912. https://doi.org/10.1002/qj.49711649405
  10. Brunetti, M., M. Maugeri, T. Nanni, C. Simolo, and J. Spinoni, 2014. High-resolution temperature climatology for Italy: Interpolation method intercomparison, International Journal of Climatology, 34: 1278-1296. https://doi.org/10.1002/joc.3764
  11. Charbonneau P., 2002. An introduction to genetic algorithms for numerical optimization, NCAR Technical Note TN-450 IA, National Center for Atmospheric Research, Boulder, Colo, USA.
  12. Choi, J.M., 2013. Spatial Accuracy of Medium Resolution ASTER GDEM Data, The Korean Association of Professional Geographers, 47(1): 61-69 (in Korean with English abstract).
  13. Cressman, G.P., 1959. An operational objective analysis system, Monthly Weather Review, 87: 367?374 https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
  14. Daly, C., R.P. Neilson, and D.L. Phillips, 1994. A statistical-topograhic model for mapping climatological precipitation over mountainous terrain, Journal of Applied Meteorology and Climatology, 33: 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  15. Frey, H., and F. Paul, 2012. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories, International Journal of Applied Earth Observation and Geoinformation, 18: 480-490. https://doi.org/10.1016/j.jag.2011.09.020
  16. Hagedorn, R., J. Francisco, Doblas-reyes, and T. N. Palmer, 2005. The rationale behind the success of multi-model ensembles in seasonal forecasting-I. Basic concept. Tellus, 57A, 3, 219-233.
  17. Holland, J.H., 1975. Adaption in Natural and Artificial Systems. University of Michigan Press, p. 288.
  18. Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Eds.), IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U.K.
  19. Kharin, V.V., F.W. Zwiers, and N. Gagnon, 2001. Skill of seasonal hindcasts as a function of the ensemble size, Climate Dynamics, 17: 835-843. https://doi.org/10.1007/s003820100149
  20. Kiehl, J.T., J.J. Hack, G.B. Bonan, B.A. Boville, B.P. Briegleb, D.L. Williamson, and P.J. Rasch, 1996. Description of the NCAR Community Climate Model (CCM3), NCAR Technical Note, p. 152.
  21. Kug, J.S., J.Y. Lee, I.S. Kang, B. Wang, and C.K. Park, 2008. Optimal Multi-model Ensemble Method in Seasonal Climate Prediction, Journal of the Korean Meteorological Society, 44: 259-267.
  22. Kim, M.K., M.S. Han, D.H. Jang, S.G. Baek, W.S. Lee, Y.H. Kim, and S. Kim, 2012. Production Technique of Observation Grid Data of 1 km Resolution, Journal of climate research, 7(1): 55-68 (in Korean with English abstract).
  23. Kim, H.J., and J.B. Ahn, 2015. Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM, Journal of Climate, 28(22): 8951-8967. https://doi.org/10.1175/JCLI-D-14-00457.1
  24. Lee. J.L, J.B. Ahn, and H.G. Jeong, 2016. A Study on the Method for Estimating the 30 m-Resolution Daily Temperature Extreme Value Using PRISM and GEV Method, Atmosphere, 26(4): 697-709 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2016.26.4.697
  25. Lee, S.H., I.H. Heo, K.M. Lee, S.Y. Kim, Y.S. Lee, and W.T. Kwon, 2008. Impacts of Climate Change on Phenology and Growth of Crops: In the Case of Naju, Journal of the Korean Geographical Society, 43(1): 20-35 (in Korean with English abstract).
  26. Lee, Y.H., S.K. Park, and D.E. Chang, 2006. Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Annales Geophysicae, 24(12): 3185-3189. https://doi.org/10.5194/angeo-24-3185-2006
  27. Jeong, D.I., A. St-Hilaire, T.B.M.J. Ouarda, and P. Gachon, 2012. Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada, Stochastic Environmental Research and Risk Assessment, 26: 633-653. https://doi.org/10.1007/s00477-011-0523-3
  28. Jo, S., and J.B. Ahn, 2014. Improvement of CGCM prediction for wet season precipitation over Maritime Continent using a bias correction method, International Journal of Climatology, 35(13): 3721-3732. https://doi.org/10.1002/joc.4232
  29. Jolliffe, I. T., and D.B. Stephenson, 2003. Forecast verification: a practitioner's guide in atmospheric science. p. 240, John Wiley, Chichester, U. K.
  30. Min, Y.M., V.N. Kryjov, and S.M. Oh, 2014. Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting: Retrospective (1983-2003) and real-time forecasts (2008-2013), Journal of Geophysical Research, 119(21): 132-143
  31. Molteni, F., T. Stockdale, M.A. Balmaseda, G. Balsamo, R. Buizza, L. Ferranti, L. Magnusson, K. Mogensen, T. Palmer, and F. Vitart, 2011. The new ECMWF seasonal forecast system (System 4). ECMWF Technical Memorandum 656, Reading, U.K.
  32. Pacanowski, R.C. and S.M. Griffies, 1998. MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA.
  33. Park, C.K., W.S. Lee, and W.T. Yun, 2008. Statistical downscaling for multi-model ensemble prediction of summer monsoon rainfall in the Asia-Pacific region using geopotential height field, Advances in Atmospheric Sciences, 25: 867-884. https://doi.org/10.1007/s00376-008-0867-x
  34. Saha, S., and and Coauthors, 2014. The NCEP climate forecast system version 2, Journal of Climate, 27(6): 2185-2208. https://doi.org/10.1175/JCLI-D-12-00823.1
  35. Skourkeas, A., F. Kolyva-Machera, and P. Maheras, 2010. Estimation of mean maximum summer and mean minimum winter temperatures over Greece in 2070-2100 using statistical downscaling methods, Euro-Asian Journal of Sustainable Energy Development Policy, 2: 33-44.
  36. Sun, J.Q., and J.B. Ahn, 2011. A GCM-based forecasting model for the landfall of tropical cyclones in China, Advances in Atmospheric Sciences, 28: 1049-1055. https://doi.org/10.1007/s00376-011-0122-8
  37. Sun, J.Q., and J.B. Ahn, 2015. Dynamical seasonal predictability of the arctic oscillation using a CGCM, International Journal of Climatology, 35(7): 1342-1353. https://doi.org/10.1002/joc.4060
  38. Szolgay, J., J. Parajka, S. Kohnova, and K. Hlavcova, 2009. Comparison of mapping approaches of design annual maximum daily precipitation, Atmospheric Research, 92(3): 289-307. https://doi.org/10.1016/j.atmosres.2009.01.009
  39. Wang, G., R. Kleeman, N. Smith, and F. Tseitkin, 2001. The BMRC coupled general circulation model ENSO forecast system, Monthly Weather Review, 130: 975?991.
  40. Wilks, D.S., 1995. Statistical Methods in the Atmospheric Sciences. Academic Press, p. 467.
  41. Yoon, S.T., 2005. Effect of Global Warming and Croping with Vulnerability of Agricultural Production, The Korean Society of International Agriculture, 17(3): 199-207 (in Korean with English abstract).