본 논문에서는 H.264/AVC의 성능향상을 위해 단방향 예측에 의한 $4{\times}4$ 인트라 부호화 방법을 제안한다. 최신의 동영상 압축 표준인 H.264/AVC에서는 $16{\times}16$과 $4{\times}4$ 인트라 예측 방법을 사용하고 있다. $4{\times}4$ 인트라 예측 방법은 예측 블록의 크기가 작기 때문에 $16{\times}16$ 예측 방법과 비교하여 상대적으로 복잡한 영역에서 보다 정밀한 예측이 가능하고, $16{\times}16$ 인트라 예측 방법은 $4{\times}4$ 예측 방법에 비해 상대적으로 큰 예측 블록을 사용하여 예측 방향정보를 적게 전송함으로써 평편한 영역에서 보다 높은 효율로 부호화할 수 있는 특징이 있다. 제안하는 방법은 매크로블록(Macroblock)을 부호화하기 위해 $4{\times}4$ 블록 단위로 예측하여 예측블록의 정밀도를 높이고, 동시에 모두 같은 방향으로 예측하여 예측 방향 정보를 줄임으로써 부호화 효율을 높이는 효과가 있다. 실험 결과, 제안하는 단방향의 $4{\times}4$ 인트라 예측 방법은 기존 H.264/AVC의 $16{\times}16$ 예측 방법과의 툴 단위 성능 비교에서 약 10.47% 정도의 비트 감소를 보인다. 또한, $16{\times}16$ 및 $4{\times}4$ 예측 방법을 모두 적용한 것과 두 가지 방법에 제안한 방법을 추가로 적용했을 때의 성능 비교에서는 평균적으로 약 1.57% 정도의 비트 감소가 있음을 확인할 수 있다.
In this paper, we propose two methods for complexity reduction of intra prediction in H.264/AVC. One is skipping of intra prediction using inter prediction cost at current macroblock in current P picture, average of intra prediction cost in previous I picture, and average of inter prediction cost in previous P picture. The other is skipping of intra 16$\times$16 prediction using intra 4$\times$4 prediction cost and modes. As a result, complexity of intra prediction in P picture and that of intra 16$\times$16 prediction in intra prediction macroblock can be reduced by about 80~99% and 50~93%, respectively.
This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.
본 논문은 시스템에 대한 기능 중심의 신뢰도 예측을 수행하기 위한 모델링 방법론을 제안한다. 신뢰도 예측에 대한 다양한 기존 연구들이 있지만, 이 연구들의 공통점은 하드웨어 중심으로 신뢰도 예측을 수행하였다는 점이다. 신뢰성이 제품이 주어진 사용 조건 아래서 의도하는 기간 동안 정해진 기능을 성공적으로 수행하는 능력이라고 정의되는 점에서 보았을 때, 하드웨어 중심의 신뢰도는 논리적 모순을 가진다. 본 논문에서는 기능 중심의 신뢰도 예측을 위해 4-단계 모델링 절차(four-phase modeling procedure)를 제안하였다. 제안되는 모델링 방법론은 네 개의 모델로 구성된다; 1) 구조적 블록 모델(structure block model), 2) 기능 블록 모델 (function block model), 3) 장치 모델 (device model), 그리고 4) 신뢰성 예측 모델 (reliability prediction model). 본 논문에서는 제안하는 모델링 방법론을 이용하여 전자식 안정기에 대한 기능 중심의 신뢰도 예측을 수행하였으며, 하드웨어의 신뢰도를 결정하기 위해 신뢰도 예측 규격 중 하나인 MIL-HDBK-217F를 이용하였다.
본 논문에서는 고성능 HEVC intra prediction을 위한 Angular 모드 결정 알고리즘을 제안한다. HEVC의 intra prediction은 공간적 중복성을 제거하기 위해 사용된다. Intra prediction은 총 35개의 모드를 가지며, $64{\times}64$에서 $4{\times}4$ 블록 크기까지 35개의 모드를 수행 후 최적의 cost를 갖는 블록 크기 및 모드를 결정한다. Intra prediction은 각 블록 크기마다 35개의 모드를 수행하기 때문에 높은 연산량과 연산시간을 가지고 있다. 제안하는 Angular 모드 결정 알고리즘은 원본영상의 간단한 픽셀차이를 가지고 Angular 모드 1개를 선택한다. 선택된 Angular 모드와 Planar 모드, DC 모드로 intra prediction을 수행하여 최적의 cost를 갖는 모드를 결정한다. 성능 평가 지표는 BD-PSNR과 BD-Bitrate를 사용하였으며, 제안하는 알고리즘과 HM-16.9를 비교한 결과 BD-PSNR은 평균 0.035 증가하였고, BD-Bitrate는 평균 0.623 감소했다. 또한, 인코딩 타임은 약 6.905% 감소하였다.
H.264/AVC is the upcoming video coding standard of ITU-T H.264 and ISO MPEG-4 AVC. The new standard can achieve a significant improvement up to 50% in compression ratio compared to MPEG-4 advanced simple profile. In this paper, we propose the novel intra prediction scheme to speed up intra prediction process in H.264/AVC decoder and show the hardware architecture for it. The proposed scheme uses the concurrent processing of the 4$\times$4 intra prediction, which is based on that some 4$\times$4 block pairs in a 16$\times$16 luma block can be processed concurrently. The proposed scheme can reduce intra prediction time by 33 %.
International standard specification, H.264/SVC improved from H.264/AVC, is set up so as to promote free use of huge multimedia data in various channel environments.;H.264/AVC is a international standard speicification for video compression, adopted and commercialized as standard for DMB broadcasting by JVT of ISO/IEC MPEG and ITU-T VCEG. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding. Among prediction technologies, 'inter-layer intra prediction' is to use co-located block of up sampled sublevels as a prediction signal. At this time, application of interpolation is one of the most important factors to determine encoding efficiency. SVC's currently using poly-phase FIR filter of 4-tap and 2-tap respectively to luma components. This paper is written for the purpose of analyzing encoding performance according to the interpolation. For this purpose, we applied poly-phase FIR filter of '2-tap', '4-tap' and '6-tap' respectively to luma components and then measured bit-rate, PNSR and running time of interpolation filter. We're expecting that the analysis results of this paper will be utilized for effective application of interpolation filter. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding.
이 논문에서는, 풀 HD 영상을 실시간에 처리가능한 새로운 화면 내 예측 및 DCTQ 하드웨어구조를 제안한다. 화면내 예측,.$4{\times}4$ 을 처리하기 위한 예측과 변환, 양자화, 역양자화, 역변환및 복원의 전체 cycle 을 줄일 수 있는 방법을 제안한다. $4{\times}4$ 예측 부호화 cycle을 줄이기 위해, 양자화과정을 예측 사이클에서 적용할 수 있도록 하였으며, 회로의 크기를 줄이기 위하여 9가지 모드 중 2개의 모드를 먼저 선택하는 알고리듬을 사용하였다. 또한 $16{\times}16$ 예측과 $8{\times}8$ 예측 과정를 하나의 코어를 이용하여 설계하므로 크기를 줄였다. 제안된 구조는 108Mhz 클럭에서 full HD영상을 30frame/sec에서 동작하며, 한 매크로블록의 처리 cycle 은 425 cycle이다.
To proactively manage climate risk, near-term climate predictions on annual to decadal time scales are of great interest to various communities. This study evaluates the near-term climate prediction skills in East Asia with DePreSys4 retrospective decadal predictions. The model is initialized every November from 1960 to 2020, consisting of 61 initializations with ten ensemble members. The prediction skill is quantitatively evaluated using the deterministic and probabilistic metrics, particularly for annual mean near-surface temperature, land precipitation, and sea level pressure. The near-term climate predictions for May~September and November~March averages over the five years are also assessed. DePreSys4 successfully predicts the annual mean and the five-year mean near-surface temperatures in East Asia, as the long-term trend sourced from external radiative forcing is well reproduced. However, land precipitation predictions are statistically significant only in very limited sporadic regions. The sea level pressure predictions also show statistically significant skills only over the ocean due to the failure of predicting a long-term trend over the land.
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.129-133
/
2023
Classification or prediction problem is how to solve it using a specific feature to obtain the predicted class. A wheat seeds specifications 4 3 classes of seeds will be used in a prediction process. A multi linear regression will be built, and a prediction error ratio will be calculated. To enhance the prediction ratio an ANN model will be built and trained. The obtained results will be examined to show how to make a prediction tool capable to compute a predicted class number very close to the target class number.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.