Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.
It is of great importance to assess the residual displacement demand in the performance-based seismic design. In this paper, a hybrid deep learning model for predicting the residual displacement spectra under near-fault (NF) ground motions is proposed by combining the long short-term memory network (LSTM) and back-propagation (BP) network. The model is featured by its capacity of predicting the residual displacement spectrum under a given NF ground motion while considering the effects of structural parameters. To construct this model, 315 natural and artificial NF ground motions were employed to compute the residual displacement spectra through elastoplastic time history analysis considering different structural parameters. Based on the resulted dataset with a total of 9,450 samples, the proposed model was finally trained and tested. The results show that the proposed model has a satisfactory accuracy as well as a high efficiency in predicting residual displacement spectra under given NF ground motions while considering the impacts of structural parameters.
Most reinforcements in concrete are constructed by steel. Corrosion of reinforcement is the main cause of damage and early failure of reinforced concrete structures. The corrosion is mainly professed by the chloride ingress. In general, chloride in concrete can be discriminated by two components, total chloride and fire chloride. This paper provides a testing method on the coefficient of chloride diffusion in concrete and the relationship between total chloride and free chloride in concrete for the composition of predicting model on diffusion rate of chloride. In order to complete this predicting model, this study will use chloride penetration characteristic, diffusion coefficient and experiment of color change on silver nitrate solution. This predicting model is going to help that grasp special quality on salt content inclusion of concrete structure that is exposed in chloride environment. Accurate predicting model can be effectively used not only in selecting of repair time but also in preventing from various deteriorations.
Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare algorithms for data analysis of industrial accidents and this paper provides an optimal predicting model of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. Also, this paper provides an approximation model for an optimal predicting model based on NN. The approximation model provided in this study can be utilized for easy interpretation of data analysis using NN. This study uses selected ten independent variables to group injured people according to a dependent variable in a way that reduces variation. In order to find an optimal predicting model among 5 algorithms, a retrospective analysis was performed in 67,278 subjects. The sample for this work chosen from data related to industrial accidents during three years ($2002\;{\sim}\;2004$) in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.
International Journal of Concrete Structures and Materials
/
제3권2호
/
pp.81-90
/
2009
This paper proposes a semi analytical model to describe the pore structure of concrete by a set of simple equations. The relationship between the porosity and the microstructure of concrete has been considered when constructing the analytical model. The microstructure includes the interface transition zone (ITZ) between aggregates and cement paste. The predicting model of porosity was developed with considering the ITZ for various mixing of mortar and concrete. The proposed model is validated by the rapid experimental programs. Although the proposed model is semi-analytical and relatively simple, this model could be reasonably utilized for the durability design and adapted for predicting the service life of concrete structures.
The numerical experiments using a particle tracking model have been performed for predicting the change of water Quality and shoreline. In present study, comparison of the numerical model results with the analytic solution shows that the point of the mainmum concentration and the distribution pattern is very similar. The reflection effect from the boundary was newly Introduced for making clear the effect of the closed boundary which set limits to application of a particle tracking model. The present model seems to reappear physical phenomenon well. This model shows well qualitative appearance of pollutant diffusion in Kwangan beach. Therefore, this model is regarded as a useful means for predicting diffusion movement of suspended sand, and change of water quality.
Data was collected to develop equation for predicting stemp taper for Carpinus laxiflora in Jeju Experimental Forests. The Models tested for choosing the best-fit equations were Max & Burkhart's model, Kozak's model, and Lee's model. Performance of the equations in predicting stem diameter at a specific point along a stem was evaluated with fit and validation statistics and distribution of residuals on predicted values. In result, all the three models gave slightly better values of fitting statistics. In plotting residuals against predicted diameter, Max & Burkhart's model showed underestimation in predicting small diameter and Lee's Model did the same in predicting small diameter. Based on the above analysis of the three models in predicting stem taper, Kozak's model was chosen for the best-fit stem taper equations, and its parameters were given for C. laxiflora. Kozak's model was used to develop a stem volume table of outside bark for C. laxiflora.
Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.
Journal of the Korea Society of Computer and Information
/
제22권7호
/
pp.31-37
/
2017
There are lots of combined battlefield elements which complete the war. It looks problematic when collecting and analyzing these elements and then predicting the situation of war. Commander's experience and military power assessment have widely been used to come up with these problems, then simulated combat training program recently supplements the war-game models through recording real-time simulated combat data. Nevertheless, there are challenges to assess winning factors of combat. In this paper, we characterize the combat element (ce) by clustering simulated combat data, and then suggest multi-layered artificial neural network (ANN) model, which can comprehend non-linear, cross-connected effects among ces to assess mission completion degree (MCD). Through our ANN model, we have the chance of analyzing and predicting winning factors. Experimental results show that our ANN model can explain MCDs through networking ces which overperform multiple linear regression model. Moreover, sensitivity analysis of ces will be the basis of predicting combat situation.
We develop a model to predict typhoons in Korea. We collect data for typhoons and classify those depending on the severity level. Following a Bayesian approach, we develop a model that explains the relationship between different levels of typhoons. Through the analysis of the model, we can predict the rate of typhoons, the probability of approaching Korean peninsular, and the probability of striking Korean peninsular. We show that the uncertainty for the occurrence of various types of typhoons reduces dramatically by adaptively updating model parameters as we acquire data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.