Development of Stem Profile and Taper Equation for Carpinus laxiflora in Jeju Experimental Forests of Korea Forest Research Institute

국립산림과학원 제주시험림의 서어나무 수간형태와 수간곡선식 추정

  • Chung, Young-Gyo (Warm Temperate Fores Research Center, Korea Forest Research Institute) ;
  • Kim, Dae-Hyun (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Kim, Cheol-Min (Warm Temperate Fores Research Center, Korea Forest Research Institute)
  • Received : 2010.04.20
  • Accepted : 2010.08.16
  • Published : 2010.08.31

Abstract

Data was collected to develop equation for predicting stemp taper for Carpinus laxiflora in Jeju Experimental Forests. The Models tested for choosing the best-fit equations were Max & Burkhart's model, Kozak's model, and Lee's model. Performance of the equations in predicting stem diameter at a specific point along a stem was evaluated with fit and validation statistics and distribution of residuals on predicted values. In result, all the three models gave slightly better values of fitting statistics. In plotting residuals against predicted diameter, Max & Burkhart's model showed underestimation in predicting small diameter and Lee's Model did the same in predicting small diameter. Based on the above analysis of the three models in predicting stem taper, Kozak's model was chosen for the best-fit stem taper equations, and its parameters were given for C. laxiflora. Kozak's model was used to develop a stem volume table of outside bark for C. laxiflora.

본 연구는 난대산림연구소의 제주시험림에 있는 서어나무 (Carpinus laxiflora)에 대한 개체목의 수간곡선식 추정 및 재적표를 개발하기 위하여 수행하였다. 최적의 추정식을 선택하기 위하여 Max & Burkhart식, Kozak식 및 Lee식을 적용하여 수간곡선식을 유도한 후, 각 식의 직경 추정에 대한 검정 통계량 및 실측치와 추정치간의 오차분포를 검증하였다. 그 결과 Max & Burkhart식 및 Lee식이 특정 구간에서 과대치 또는 과소 추정치를 보인데 반하여 Kozak식은 전구간에서 고른 분포를 보였다. 추정력이 가장 좋은 Kozak식을 활용하여 수피포함 재적표를 작성하였다.

Keywords

References

  1. Bi, H. 2000. Trigonometric variable-form taper equations for Australian eucalyptus. For. Sci. 46: 397-409.
  2. Biging, G. S. 1984. Taper equations for second-growth mixed conifers of Northern California. For. Sci. 30: 1103-1117.
  3. Bonnor, G. M. and P. Boudewyn. 1990. Taper-volume equations for major tree species of the Yukon Territory. Forestry Canda Pacific and Yukon Region Information Report BC-X-323. 18pp.
  4. Demaerschalk, J. 1972. Converting volume equations to compatible taper equations. For. Sci. 18: 241-245.
  5. Fang, Z., B. E. Borders, and R. L. Bailey. 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For. Sci. 46: 1-12.
  6. Goulding, C. J. and J. C. Murray. 1976. Polynomial taper equations that are compatible with tree volume equations. N. Z. J. For. Sci. 5: 313-322.
  7. Kozak, A. 1988. A variable-exponent taper equation. Can. J. For. Res. 18, 1363-1368. https://doi.org/10.1139/x88-213
  8. Kozak, A. 2004. My last words on taper functions. For. Chron. 80: 507-515. https://doi.org/10.5558/tfc80507-4
  9. Lee K. H., Y. M. Son, Y. G. Chung, and W. K. Lee. 1999. A taper and volume prediction system for Pinus densiflora in Kangwon Province, Korea. FRI. J. For. Sci. 62: 155-166.
  10. Lee, W. K. 1993. Wachstums-und Ertragsmodelle fur Pinus densiflora in der Kangwon-Provinz, Korea. Dissertation, Gottingen.
  11. Lee, W. K. 1994. Stem and stand taper model using spline function and linear equation. Jour. Korean For. Soc. 83: 63-74.
  12. Max, T. A. and H. E. Burkhart. 1976. Segmented polynomial regression applied to taper equations. For. Sci. 22: 283-289.
  13. Muhairwe, C. K. 1994. Tree form and taper variation over time for interior lodgepole pine. Canadian Journal of Forest Research, 24: 1904-1913. https://doi.org/10.1139/x94-245
  14. Newnham, R. 1992. Variable-formtaper functions for four Alberta tree species. Can. J. For. Res. 22: 210-223. https://doi.org/10.1139/x92-028
  15. Son, Y. M., K. H. Lee, W. K. Lee, and S. D. Kwon. 2002. Stem taper equations for six major tree species in Korea. Jour. Korean For. Soc. 91: 213-218
  16. 산림청, 2008. 재적.중량표 (입목 및 원목). 산림청. 대전. pp. 228.