• Title/Summary/Keyword: Predicted residual

Search Result 389, Processing Time 0.023 seconds

Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results - (사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends (복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측)

  • Oh, Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.

Application and Verification of Virtual Manufacturing to Hot Press Forming Process with Boron Steel (보론강 핫 프레스 포밍 공정에 대한 가상생산 응용 및 검증)

  • Suh, Yeong-Sung;Ji, Min-Wook;Lee, Kyung-Hoon;Kim, Young-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • A virtual manufacturing system that is composed of JMatPro, a material modeler and $DEFORM^{TM}$-HT, a finite element package is applied to the hot press forming process: high temperature material properties for each phase such as flow stress, elastic modulus, Poisson's ratio, thermal expansion coefficient, in addition to TTT curve are predicted by JMatPro and taken into $DEFORM^{TM}$-HT to predict the material behavior considering phase transformation and heat transfer simultaneously. In order to verify the accuracy of computation, the residual stress and the springback were compared with the experimental measurements. Both the predicted and measured principal residual stresses and amount of springback were in good agreement. It was also found that the residual stresses generated from hot press forming are not negligible as it has been generally assumed, although the springback deformation is quite small.

Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs

  • Dong, Huihui;Han, Qiang;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.683-697
    • /
    • 2019
  • The reinforced concrete (RC) structures usually suffer large residual displacements under strong motions. The large residual displacements may substantially reduce the anti-seismic capacity of structures during the aftershock and increase the difficulty and cost of structural repair after an earthquake. To reduce the adverse residual displacement, several self-centering energy dissipation braces (SCEBs) have been proposed to be installed to the RC structures. To investigate the seismic responses of the RC structures with SCEBs under the earthquake excitation, an extended Bouc-Wen model with degradation and self-centering effects is developed in this study. The extended model realized by MATLAB/Simulink program is able to capture the hysteretic characteristics of the RC structures with SCEBs, such as the energy dissipation and the degradation, especially the self-centering effect. The predicted hysteretic behavior of the RC structures with SCEBs based on the extended model, which used the unscented Kalman filter (UKF) for parameter identification, is compared with the experimental results. Comparison results show that the predicted hysteretic curves can be in good agreement with the experimental results. The nonlinear dynamic analyses using the extended model are then carried out to explore the seismic performance of the RC structures with SCEBs. The analysis results demonstrate that the SCEB can effectively reduce the residual displacements of the RC structures, but slightly increase the acceleration.

Gamma irradiation and subsequent storage reduce patulin content in apple juice

  • Hyejeong Yun;Dong-Ho Kim;Jung-Ok Kim;Gee-Dong Lee;Joong-Ho Kwon
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.499-505
    • /
    • 2024
  • Patulin has been reported as a risk factor in various foods, especially apple juice. This study monitored residual patulin and polyphenolic content in apple juice during post-irradiation storage conditions. Response surface methodology (RSM) was applied to monitor the changes in dependent variables (Yn, patulin, and polyphenolics) as affected by independent variables, such as storage temperature (Xi, -20℃ to 20℃), irradiation dose (Xii, 0-2 kGy), and storage period (Xiii, 0-20 days), which were based on a central composite design. The predicted peak point resulted in the lowest residual patulin content of 58.42 ppb with the corresponding independent parameter conditions, such as 18.19℃ of storage temperature, 1.24 kGy of irradiation dose, and 13.42 days of storage period. The residual patulin content of 58.42 ppb is the minimum desirable level, representing a 91% reduction compared to the non-irradiated control (675.00 ppb). A maximum polyphenolics content (11.98 mg/g) was obtained under the predicted maximum conditions of 14.40℃, 0.78 kGy, and 3.4 days. The most influential parameter in reducing residual patulin content while maintaining polyphenolic content in apple juice was irradiation dose (p<0.01), which showed potential to be applied in controlling the patulin levels in apple juice.

An Analysis of the Redistribution of Residual Stress Due to Crack Propagation Initially Through Residual Tensile Stress Field by Finite Element Method (인장잔류응력장으로부터 피로균열이 전파하는 경우 잔류응력의 재분포거동에 대한 해석적 검토)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.71-77
    • /
    • 2003
  • In this study, an investigation based on the superposition principle to predict residual stress redistribution caused by crack propagation itself initially through residual tensile stress field was performed by finite element method. The tendency in residual stress redistribution caused by crack propagation recognized both from the analytical results and experimental result was the residual stress concentration consecutively occurred in the vicinity of crack tip even the situation that the crack propagated to the region initially residual compressive stress existed. The software for the analysis is ABAQUS, which is a general purpose finite element package. The analytical method that attempt to take the plastic deformation at the crack tip due to tensile residual stress into the consideration of residual stress redistribution caused by crack propagation was proposed. The plastic zone size at the tip of fatigue crack and redistributed residual stresses were calculated by finite element method on the bases of the concept of Dugdale model. Comparing these analytical results with experimental results, it is verified that the residual stress redistribution caused by crack propagation can be predicted by finite element method with the proposed analytical method.

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.

Predicting Method of Rosidual Stress Using Artificial Neural Network In $CO_2$ Are Weldling (인공신경망을 이용한 탄산가스 아크용접의 잔류응력 예측)

  • 조용준;이세현;엄기원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.482-487
    • /
    • 1993
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO $_{2}$ Arc Welding using the finite element method. The validity of the above results is demonstrated by experimental elastic stress relief method which is called Holl Drilling Method. The first part of numarical analysis performs a three-dimensional transient heat transfer anslysis, and the second part then uses results of the first part and performs a three-dimensional transient thermo-clasto-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method were used to train a backpropagation neural network to predict residual stress. Architecturally, the finite element method were used to train a backpropagation voltage and the current, a hidden layer to accommodate failure mechanism mapping, and an output layer for residual stress. The trained network was then applied to the prediction of residual stress in the four specimens. The results of predicted residual stress have been very encouraging.

  • PDF

Fatigue Crack shape Variations by a Residual Stress and Fatigue Life Predition (잔류응력에 의한 피로균열면 형상변화 및 수명예측)

  • 강용구;서창민;박원종
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.68-78
    • /
    • 1993
  • Fatigue crack shape variation by a residual stress during crack growth and life predition are studied. An analytical method is presented to predict the influence of a residual stress due to heattreatment on crack shape variations. Computer simulation results using this me thod are graphically shown that crack growth rate to surface direction are decreased due to compressive residual stress exisiting in surface area. These results are commpared with experimental results. The fatigue life is also predicted by computer simulation of crack aspect ratio variation which is based on the surface crack length increment per unit cycle calculated from a-N diagram. Predited life is about 12 percent lower than experimental life.

  • PDF

A Study on the Prediction of Fatigue Crack Growth Rate in Stainless Steel Weldments (스테인레스강 용접부의 피로균열 전파속도 예측에 관한 연구)

  • 이용복
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.68-78
    • /
    • 1998
  • Welding structure contains residual stress due to thermal-plastic strain during welding process, and its magnitude and distribution depend on welding conditions. Cracks initiate from various defects of the weldment, propagate and lead to final fracture, The crack initiation and propagation processes are affected by the magnitude and distribution. Therefore, the magnitude and distribution of weldment residual stress should be considered for safety design and service of welding structures. Also it is very important that more accurate assessment method of fatigue crack growth must take into account the redistributing the residual stress quantitively. because the residual stress in weldment has characteristics of its redistribution with loading magnitude, number of cycles and fatigue crack propagation. In this study fatigue crack behavior of STS-304 weldment was investigated during crack propagation into tensile residual stress region or compressive residual stress region. Crack growth rates were predicted and compared with experimental results.

  • PDF