• Title/Summary/Keyword: Predicted Mean Temperature PMV

Search Result 56, Processing Time 0.028 seconds

Simplification of PMV through Multiple Regression Analysis (다중회귀분석을 통한 PMV 모델의 단순화)

  • Moon, Yong-Jun;Noh, Kwang-Chul;Oh, Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.761-769
    • /
    • 2007
  • The purpose of this study is to present a simplified model of predicted mean vote (PMV) using multiple regression analysis. We performed the experiments and the numerical calculations in the lecture room during summer and winter to simplify PMV. And the multiple regression analysis on PMV was conducted to estimate the contribution of independent variables toward PMV. From the multiple regression analysis, we found that the effect of independent variables on PMV followed in order, clo value>air temperatur>air velocity>mean radiant temperature>relative humidity. And the simplified PMV was proposed through a few assumptions and then was compared with original PMV. They had a good agreement with each other. Additionally, we compared the simplified PMV with EDT. We expected that the simplified PMV can be more useful than EDT to evaluate the thermal comfort in the place, where radiation is dominant. But the comfort range of the simplified PMV should be adjusted to predict the exact thermal comfort in the future.

Evaluation of the Indoor Thermal Comfort in Consideration of the Solar Radiation (태양 일사를 고려한 실내 열쾌적성 평가 연구)

  • Kim Se-Hyun;Noh Kwang-Chul;Oh Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1140-1148
    • /
    • 2004
  • Recently the Predicted Mean Vote (PMV) has been used as an important index to evaluate the degree of the indoor thermal comfort in modern residential buildings. It is known that the PMV is mainly affected by four major factors, which are the air temperature, the air velocity, the humidity and the mean radiant temperature (MRT). Through the numerical calculation of the temperature and the modeling of the mean radiant temperature considering the solar radiation, we proposed the new modeling strategies of the mean radiant temperature and investigated the PMV index and evaluated the MRT. Also, we compared the numerical results with the experimental values. As the results, we found out that the MRT is affected by the wall temperature and the solar radiation. We also knew that the new modeling strategies of the mean radiant temperature is a more correct way of PMV calculation. Especially, the new modeling is necessary for the spaces like an atrium and large rooms with windows mainly influenced by solar radiation.

Nationwide Reduction of Primary Energy and Greenhouse Gas Emission by PMV Control Considering Individual Metabolic Rate Variations in Apartments (아파트 건물에서 재실자 활동량이 고려된 PMV제어에 따른 연간 국가 차원의 1차 에너지 및 온실가스 감축량 분석)

  • Hong, Sung-Hyup;Do, Sung-Lok;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.37-44
    • /
    • 2018
  • In this study, the effects of considering hourly metabolic rate variations for predicted mean vote (PMV) control on the heating and cooling energy and greenhouse gas emission were investigated. The case adopting PMV control taking the hourly metabolic rate into account was comparatively analyzed against the conventional dry-bulb air temperature control, using a detailed simulation technique. Under the assumption that all the apartments in Korea adopt the PMV control incorporating real-time metabolic rate measurements, nationwide reductions of primary energy and greenhouse gas emission were analyzed. As a result, PMV control considering hourly metabolic rate variations is expected to reduce national primary energy by 6.2% compared to conventional dry-bulb air temperature control, corresponding to reduction of 10,342 GWh. In addition, it turned out that 6.6% of tCO2 emission can be reduced by adopting PMV control, corresponding to nationwide reduction of greenhouse gas emission by approximately 1,720,000 tCO2.

Comparison of Thermal Comfort Performance Indices for Cooling Loads in the Lecture Room - An Correlation of PMV Bnd EDT - (강의실에서의 냉방부하에 따른 열쾌적성 평가지표 비교 - PMV와 EDT의 연관성 -)

  • Noh Kwang-Chul;Oh Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.868-877
    • /
    • 2005
  • We performed the experimental and the numerical study on the comparison of thermal comfort performance indices for cooling loads in the lecture room for 4 cases: Fan coil unit(FCU) or 4-way cassette air-conditioner is respectively operated with the ventilation system or without. We measured the velocity, the temperature distribution and predicted mean vote(PMV) value in the lecture room for 4 different air-conditioning methods. Effective draft temperature(EDT) and PMV were investigated to analyze the characteristics of two thermal comfort indices in the lecture room and to compare their values each other. From the results we knew that there is the similarity between PMV values and EDTs when the room is air-conditioned for cooling loads. It turned out that definition of the control temperature is very important when the EDT is calculated. Finally EDT should not be used to predict the accurate thermal comfort in case that the temperature and humidity are suddenly varied and the zone affected by the solar and inner wall radiation.

Numerical Study on Human Model's Shape and Grid Dependency for Indoor Thermal Comfort Evaluation (실내 온열쾌적성 평가를 위한 인체 모델링 및 격자특성에 대한 수치해석적 연구)

  • Park, J.H.;Seo, J.W.;Choi, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.210-217
    • /
    • 2011
  • Recently, research on evaluating thermal comfort by using CFD has been vigorously active. This research evaluates not only distribution of temperature and air flow analysing but also thermal comfort in indoor space by applying human model. But research of human model's shape, Grid characteristic and turbulence model has not yet been studied. In this paper, human model's shape, physical characteristic of variable Grid, and change of turbulence model has been studies by CFD. In this study. FLUENT is used for analysis and PMV(predicted Mean Vote), PPD(Predicted Percentage Dissatisfied) and EHT(Equivalent Homogeneous Temperature} are used for evaluation and comparison of thermal comfort. As a result, it shows that shape of CSP and lattice features does not affect on global flow field or evaluation on PMV, PPD. However, it demonstrates more precise result from evaluation of thermal comfort by equivalent temperature when it used detailed human model considering prism grid.

  • PDF

Measurement and Analysis of indoor PMV by Winter Temperature Humidity Change in Rolling Stock (겨울철 온도와 습도변화에 따른 철도차량 실내 PMV 측정 분석)

  • So, Jin-Sub;Yoo, Seong-Yeon;Kim, Hui-Man;Kang, Sung-Hae;Kim, Wan-Jong;Kim, Yun-Su;Kim, Jin-Kyu;Seo, Seung-Seok;Yun, Cha-Jung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2094-2100
    • /
    • 2008
  • The indoor PMV(Predicted Mean Vote) in rolling stock is very important for the enhancement of the amenity and health of passengers. Many researchers have studied it not for train but for building. Thermal comfort in Rolling Stock is function of temperature, relative humidity, air current, radiation temperature, etc. So, in this study, we have performed thermal environment in rolling stock(Electric motor car, Saemaeul, Mugunghwa train), and verified the relation between the PMV from Nov.2007 and Feb.2008. As a result, the average PMV value for each trains are 0.2, -0.3 Electric motor car, 0.5, 0.1, 0.1, 1.1 for Mugunghwa, 0.3, 0.5 for Saemaeul.

  • PDF

A Study on the Indoor Thermal Environment of House Using Earth Brick Wall (황토벽돌벽 주택의 실내온열환경에 관한 연구)

  • 이재윤
    • Journal of the Korean housing association
    • /
    • v.15 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • The purpose of this study is to understand the indoor thermal environment in the earth brick wall building what is called a ecological Architecture. To investigate thermal performances of the earth brick walls, it measured indoor and outdoor air temperature, relative humidity, globe temperature and PMV in reference house. The result of this study were summarized as the followings; 1) When the outdoor average air temperature was $21.8^{\circ}$, livingroom was $24.9^{\circ}$, kitchen was $25.1^{\circ}$ and 2nd floor room was $25.6^{\circ}$ at 150 cm height from the floor. 2) Although the average outdoor relative humidity was 78%, the livingroom was 67.5%. 3) As the air temperature difference between at the top and bottom was $0.6^{\circ}$ in living room, this value was below 1 % of PPD by ASHRAE Handbook. 4) Predicted Mean Vote(PMV) by ISO-7730 was +0.41.

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer (여름철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Lee, C.H.;Bae, G.N.;Choi, H.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index (PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션)

  • Seong, Nam-Chul;Yoon, Dong-Won
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Thermal comfort provide satisfaction of thermal environment and affects productivity of occupants in residential building. However, temperature control can not provide the thermal comfort at all the time. because thermal comfort is influenced by many environmental variables such as temperature, relative humidity, air velocity, radiation temperature, activity level and clothing insulation. The purpose of this study is that predicted mean vote(PMV) index is used as control. And, Thermal comfort is evaluated both PMV control and temperature control by simulation. Each other cases were compared, in which set-point temperatures of $22^{\circ}C$ and $24^{\circ}C$ and, set-point PMV index through the respective heating season in the simulation. The results show that PMV control is better to maintain comfort state and save energy than temperature control.

Numerical Study on Human Thermal Comfort in a Low Floor Bus (저상버스 탑승객의 온열 쾌적성에 관한 수치연구)

  • PARK, WON GU;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.645-651
    • /
    • 2015
  • Numerical study on human thermal comfort in a low floor bus has been conducted. Human thermal comfort in a bus depends mainly on air temperature, air velocity, mean radiant temperature, humidity, and direct solar flux, as well as the level of activity and thermal properties of clothing. The paper presents the velocity and temperature distribution, Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices for the driver and passengers.