• 제목/요약/키워드: Predator-prey

검색결과 183건 처리시간 0.028초

Molecular Taxonomy of a Phantom Midge Species (Chaoborus flavicans) in Korea

  • An, Hae-In;Jung, Gil-A;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • 제28권1호
    • /
    • pp.36-41
    • /
    • 2012
  • The larvae of Chaoborus are widely distributed in lakes, ponds, and reservoirs. These omnivorous Chaoborus larvae are crucial predators and play a role in structuring zooplankton communities, especially for small-sized prey. Larvae of Chaoborus are commonly known to produce predator-induced polyphenism in Daphnia sp. Nevertheless, their taxonomy and molecular phylogeny are very poorly understood. As a fundamental study for understanding the role of Chaoborus in predator-prey interactions in a freshwater ecosystem, the molecular identification and phylogenetic relationship of Chaoborus were analyzed in this study. A molecular comparison based on partial mitochondrial cytochrome oxidase I (COI) between species in Chaoborus was carried out for the identification of Chaoborus larvae collected from 2 localities in Korea. According to the results, the Chaoborus species examined here was identified as C. flavicans, which is a lake-dwelling species. Furthermore, partial mitochondrial genome including COI, COII, ATP6, ATP8, COIII, and ND3 were also newly sequenced from the species and concatenated 5 gene sequences excluding ATP8 with another 9 dipteran species were compared to examine phylogenetic relationships of C. flavicans. The results suggested that Chaoborus was more related to the Ceratopogonidae than to the Culicidae. Further analysis based on complete mitochondrial DNA sequences and nuclear gene sequences will provide a more robust validation of the phylogenetic relationships of Chaoborus within dipteran lineages.

Ingestion of the unicellular cyanobacterium Synechococcus by the mixotrophic red tide ciliate Mesodinium rubrum

  • Yoo, Yeong Du;Seong, Kyeong Ah;Myung, Geumog;Kim, Hyung Seop;Jeong, Hae Jin;Palenik, Brian;Yih, Wonho
    • ALGAE
    • /
    • 제30권4호
    • /
    • pp.281-290
    • /
    • 2015
  • We explored phagotrophy of the phototrophic ciliate Mesodinium rubrum on the cyanobacterium Synechococcus. The ingestion and clearance rates of M. rubrum on Synechococcus as a function of prey concentration were measured. In addition, we calculated grazing coefficients by combining the field data on abundance of M. rubrum and co-occurring Synechococcus spp. with laboratory data on ingestion rates. The ingestion rate of M. rubrum on Synechococcus sp. linearly increased with increasing prey concentrations up to approximately 1.9 × 106 cells mL-1, to exhibit sigmoidal saturation at higher concentrations. The maximum ingestion and clearance rates of M. rubrum on Synechococcus were 2.1 cells predator-1 h-1 and 4.2 nL predator-1 h-1, respectively. The calculated grazing coefficients attributable to M. rubrum on cooccurring Synechococcus spp. reached 0.04 day-1. M. rubrum could thus sometimes be an effective protistan grazer of Synechococcus in marine planktonic food webs. M. rubrum might also be able to form recurrent and massive blooms in diverse marine environments supported by the unique and complex mixotrophic arrays including phagotrphy on hetrotrophic bacteria and Synechococcus as well as digestion, kleptoplastidy and karyoklepty after the ingestion of cryptophyte prey.

Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta

  • Yoo, Yeong Du;Yoon, Eun Young;Lee, Kyung Ha;Kang, Nam Seon;Jeong, Hae Jin
    • ALGAE
    • /
    • 제28권4호
    • /
    • pp.343-354
    • /
    • 2013
  • To explore the interactions between the mixotrophic dinoflagellate Biecheleria cincta (previously Woloszynskia cincta) and heterotrophic protists, we investigated whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oxyrrhis marina, and Polykrikos kofoidii, and the ciliate Strobilidium sp. were able to feed on B. cincta. We also measured growth and ingestion rates of O. marina and Strobilidium sp. on B. cincta as a function of prey concentration. In addition, these rates were measured for other predators at single prey concentrations at which the growth and ingestion rates of O. marina and Strobilidium sp. were saturated. All grazers tested in the present study were able to feed on B. cincta. B. cincta clearly supported positive growth of O. marina, G. dominans, and Strobilidium sp., but it did not support that of G. moestrupii, G. spirale, and P. kofoidii. The maximum growth rates of Strobilidium sp. and O. marina on B. cincta (0.91 and 0.49 $d^{-1}$, respectively) were much higher than that of G. dominans (0.07 $d^{-1}$). With increasing the mean prey concentration, the specific growth rates of O. marina and Strobilidium sp. on B. cincta increased, but either became saturated or slowly increased. The maximum ingestion rate of Strobilidium sp. (1.60 ng C $predator^{-1}\;d^{-1}$) was much higher than that of P. kofoidii and O. marina (0.55 and 0.34 ng C $predator^{-1}\;d^{-1}$) on B. cincta. The results of the present study suggest that O. marina and Strobilidium sp. are effective protistan grazers of B. cincta.

Integration of Optimality, Neural Networks, and Physiology for Field Studies of the Evolution of Visually-elicited Escape Behaviors of Orthoptera: A Minireview and Prospects

  • Shin, Hong-Sup;Jablonski, Piotr G.
    • Journal of Ecology and Environment
    • /
    • 제31권2호
    • /
    • pp.89-95
    • /
    • 2008
  • Sensing the approach of a predator is critical to the survival of prey, especially when the prey has no choice but to escape at a precisely timed moment. Escape behavior has been approached from both proximate and ultimate perspectives. On the proximate level, empirical research about electrophysiological mechanisms for detecting predators has focused on vision, an important modality that helps prey to sense approaching danger. Studies of looming-sensitive neurons in locusts are a good example of how the selective sensitivity of nervous systems towards specific targets, especially approaching objects, has been understood and realistically modeled in software and robotic systems. On the ultimate level, general optimality models have provided an evolutionary framework by considering costs and benefits of visually elicited escape responses. A recent paper showed how neural network models can be used to understand the evolution of visually mediated antipredatory behaviors. We discuss this new trend towards integration of these relatively disparate approaches, the proximate and the ultimate perspectives, for understanding of the evolution of behavior of predators and prey. Focusing on one of the best-studied escape pathway models, the Orthopteran LGMD/DCMD pathway, we discuss how ultimate-level optimality modeling can be integrated with proximate-level studies of escape behaviors in animals.

BIOECONOMIC MODELLING OF A THREE-SPECIES FISHERY WITH SWITCHING EFFECT

  • Samanta, G.P.;Manna, Debasis;Maiti, Alakes
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.219-231
    • /
    • 2003
  • This paper aims to study the problem of combined harvesting of a system involving one predator and two prey species fishery in which the predator feeds more intensively on the more abundant species. Mathematical formulation of the optimal harvest policy is given and its solution is derived in the equiblibrium case by using Pontryagin's Maximum principle. Dynamic optimization of the harvest policy is also discussed by taking E(t), the combined harvest effort, as a dynamic variable. Biological and bioeconomic interpretations of the results associated with the optimal equilibirum solution are explained. The significance of the constraints required for the existence of an optimal singular control are also given.

Visual Cells of the Introduced Bluegill Lepomis macrochirus (Pisces; Centropomidae) of Korea

  • Kim, Jae Goo;Park, Jong Young
    • Applied Microscopy
    • /
    • 제46권2호
    • /
    • pp.89-92
    • /
    • 2016
  • The bluegill Lepomis macrochirus is an invasive species, not native to Korea, introduced for aquaculture. This species is ranked as a new top predator due to its massive aquatic carnivorous and herbivorous nature by acute vision and the absence of a natural enemy. The visual cells of the retina of L. macrochirus are composed of short single cones and equal double cones and long and bulky rods by light and electron microscopes. In particular, the cones show a regular square mosaic arrangement. This pattern is widely considered as a strong predator. With regard to the visual system, this mosaic pattern may closely be related to a dynamic visual acuity to track and hunt prey.

Lotka-Volterra 모형을 이용한 국내 주식시장의 경쟁관계 동태적 분석 (A Dynamic Analysis on the Competition Relationships in Korean Stock Market Using Lotka-Volterra Model)

  • 이성준;이덕주;오형식
    • 대한산업공학회지
    • /
    • 제29권1호
    • /
    • pp.14-20
    • /
    • 2003
  • The purpose of this paper is an attempt to analyze the dynamic relationship between KSE and KOSDAQ, two competing markets in Korean stock market, in the viewpoint of competition. Lotka-Volterra model, one of well-known competitive diffusion model, is adopted to represent the competitive situations of Korean stock market and it is estimated using daily empirical index data of KSE and KOSDAQ during 1997~2001. The results show that there existed a predator-prey relationship between two markets in which KSE acted as a predator right after the emergence of KOSDAQ. This interaction was altered to a symbiotic relationship and finally to the pure competition relationship. We also perform an equilibrium analysis of the estimated Lotka-Volterra equations and, as a result, it is found that there is a market index equilibrium point that would be stable in the latest relationship.

Reduction in CO2 uptake rates of red tide dinoflagellates due to mixotrophy

  • Jeong, Hae Jin;Lee, Kitack;Yoo, Yeong Du;Kim, Ja-Myung;Kim, Tae Hoon;Kim, Miok;Kim, Ju-Hyoung;Kim, Kwang Young
    • ALGAE
    • /
    • 제31권4호
    • /
    • pp.351-362
    • /
    • 2016
  • We investigated a possible reduction in $CO_2$ uptake rate by phototrophic red tide dinoflagellates arising from mixotrophy. We measured the daily ingestion rates of Prorocentrum minimum by Prorocentrum micans over 5 days in 10 L experimental bottles, and the uptake rates of total dissolved inorganic carbon ($C_T$) by a mixture of P. micans and P. minimum(mixotrophic growth), and for the predator P. micans (phototrophic growth; control) and prey P. minimum (phototrophic growth; control) alone. To account for the effect of pH on the phototrophic growth rates of P. micans and P. minimum, measurements of $C_T$ and pH in the predator and prey control bottles were continued until the pH reached the same level (pH 9.5) as that in the experimental bottles on the final day of incubation. The measured total $C_T$ uptake rate by the mixture of P. micans and P. minimum changed from 123 to $161{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment, and was lower than the $C_T$ uptake rates shown by P. micans and P. minimum in the predator and prey control bottles, respectively, which changed from 132 to $17{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment. The reduction in total $C_T$ uptake rate arising from the mixotrophy of P. micans was 7-31% of the daily $C_T$ uptake rate seen during photosynthesis. The results suggest that red tide dinoflagellates take up less $C_T$ during mixotrophy.

Univector Field Method based Multi-Agent Navigation for Pursuit Problem

  • Viet, Hoang Huu;An, Sang-Hyeok;Chung, Tae-Choong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.86-93
    • /
    • 2012
  • This paper presents a new approach to solve the pursuit problem based on a univector field method. In our proposed method, a set of eight agents works together instantaneously to find suitable moving directions and follow the univector field to pursue and capture a prey agent by surrounding it from eight directions in an infinite grid-world. In addition, a set of strategies is proposed to make the pursuit problem more realistic in the real world environment. This is a general approach, and it can be extended for an environment that contains static or moving obstacles. Experimental results show that our proposed algorithm is effective for the pursuit problem.

POSITIVE SOLUTIONS OF A REACTION-DIFFUSION SYSTEM WITH DIRICHLET BOUNDARY CONDITION

  • Ma, Zhan-Ping;Yao, Shao-Wen
    • 대한수학회보
    • /
    • 제57권3호
    • /
    • pp.677-690
    • /
    • 2020
  • In this article, we study a reaction-diffusion system with homogeneous Dirichlet boundary conditions, which describing a three-species food chain model. Under some conditions, the predator-prey subsystem (u1 ≡ 0) has a unique positive solution (${\bar{u_2}}$, ${\bar{u_3}}$). By using the birth rate of the prey r1 as a bifurcation parameter, a connected set of positive solutions of our system bifurcating from semi-trivial solution set (r1, (0, ${\bar{u_2}}$, ${\bar{u_3}}$)) is obtained. Results are obtained by the use of degree theory in cones and sub and super solution techniques.