DOI QR코드

DOI QR Code

Reduction in CO2 uptake rates of red tide dinoflagellates due to mixotrophy

  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lee, Kitack (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Yoo, Yeong Du (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Kim, Ja-Myung (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Tae Hoon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kim, Miok (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Ju-Hyoung (Faculty of Marine Applied Biosciences, Kunsan National University) ;
  • Kim, Kwang Young (Department of Oceanography, College of Natural Sciences, Chonnam National University)
  • Received : 2016.10.11
  • Accepted : 2016.11.17
  • Published : 2016.12.15

Abstract

We investigated a possible reduction in $CO_2$ uptake rate by phototrophic red tide dinoflagellates arising from mixotrophy. We measured the daily ingestion rates of Prorocentrum minimum by Prorocentrum micans over 5 days in 10 L experimental bottles, and the uptake rates of total dissolved inorganic carbon ($C_T$) by a mixture of P. micans and P. minimum(mixotrophic growth), and for the predator P. micans (phototrophic growth; control) and prey P. minimum (phototrophic growth; control) alone. To account for the effect of pH on the phototrophic growth rates of P. micans and P. minimum, measurements of $C_T$ and pH in the predator and prey control bottles were continued until the pH reached the same level (pH 9.5) as that in the experimental bottles on the final day of incubation. The measured total $C_T$ uptake rate by the mixture of P. micans and P. minimum changed from 123 to $161{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment, and was lower than the $C_T$ uptake rates shown by P. micans and P. minimum in the predator and prey control bottles, respectively, which changed from 132 to $17{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment. The reduction in total $C_T$ uptake rate arising from the mixotrophy of P. micans was 7-31% of the daily $C_T$ uptake rate seen during photosynthesis. The results suggest that red tide dinoflagellates take up less $C_T$ during mixotrophy.

Keywords

References

  1. Arar, E. J. & Collins G. B. 1997. In vitro determination of chlorophyll a and pheophytina in marine and freshwater algae by fluorescence. m445.0-11. National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, GA.
  2. Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D. C., Leggat, W. & Price, G. D. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based $CO_2$-concentrating mechanisms in the algae. Can. J. Bot. 76:1052-1071.
  3. Berge, T., Hansen, P. J. & Moestrup, O. 2008. Prey size spectrum and bioenergetics of the mixotrophic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:289-299. https://doi.org/10.3354/ame01166
  4. Bockstahler, K. R. & Coats, D. W. 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. 116:477-487. https://doi.org/10.1007/BF00350065
  5. Burkhardt, S., Amoroso, G., Riebesell, U. & Sultemeyer, D. 2001. $CO_2$ and $HCO_3$-uptake in marine diatoms acclimated to different $CO_2$ concentrations. Limnol. Oceanogr. 46:1378-1391. https://doi.org/10.4319/lo.2001.46.6.1378
  6. Burkholder, J. M., Glibert, P. M. & Skelton, H. M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93. https://doi.org/10.1016/j.hal.2008.08.010
  7. Dason, J. S., Huertas, I. E. & Colman, B. 2004. Source of inorganic carbon for photosynthesis in two marine dinoflagellates. J. Phycol. 40:285-292. https://doi.org/10.1111/j.1529-8817.2004.03123.x
  8. Dickson, A. G. & Millero, F. J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. A 34:1733-1743. https://doi.org/10.1016/0198-0149(87)90021-5
  9. Emerson, S., Quay, P., Karl, D., Winn, C., Tupas, L. & Landry, M. 1997. Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389:951-954. https://doi.org/10.1038/40111
  10. Falkowski, P. G. & Raven, J. A. 1997. Aquatic photosynthesis. Blackwell Scientific Publishers, Oxford, 375 pp.
  11. Giordano, M., Beardall, J. & Raven, J. A. 2005. $CO_2$ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99-131.
  12. Glibert, P. M., Burkholder, J. M., Kana, T. M., Alexander, J., Skelton, H. & Shilling, C. 2009. Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb. Ecol. 55:17-30. https://doi.org/10.3354/ame01279
  13. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Grun. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  14. Hansen, P. J., Lundholm, N. & Rost, B. 2007. Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. Mar. Ecol. Prog. Ser. 334:63-71. https://doi.org/10.3354/meps334063
  15. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J. & Xiaosu, D. 2001. Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 pp.
  16. Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285. https://doi.org/10.1111/j.0022-3646.1996.00279.x
  17. Jeong, H. J. & Latz, M. I. 1994. Growth and grazing rates of the heterotrphic dinoflagellates Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 106:173-185. https://doi.org/10.3354/meps106173
  18. Jeong, H. J., Lee, C. W., Yih, W. H. & Kim, J. S. 1997. Fragilidium cf. mexicanum, a thecate mixotrophic dinoflagellate, which is prey for and a predator on co-occurring thecate heterotrophic dinoflagellate Protoperidinium cf. divergens. Mar. Ecol. Prog. Ser. 151:299-305. https://doi.org/10.3354/meps151299
  19. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  20. Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N. & Yih, W. H. 2005a. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 41:131-143. https://doi.org/10.3354/ame041131
  21. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. https://doi.org/10.1073/pnas.1204302109
  22. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  23. Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005b. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150. https://doi.org/10.3354/ame040133
  24. Jeong, H. J., Yoo, Y. D., Seong, K. A., Kim, J. H., Park, J. Y., Kim, S., Lee, S. H., Ha, J. H. & Yih, W. H. 2005c. Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat. Microb. Ecol. 38:249-257. https://doi.org/10.3354/ame038249
  25. Keeling, C. D. & Whorf, T. P. 2000. The 1,800-year oceanic tidal cycle: a possible cause of rapid climate change. Proc. Natl. Acad. Sci. U. S. A. 97:3814-3819. https://doi.org/10.1073/pnas.070047197
  26. Kim, J.-H., Kang, E. J., Kim, K., Jeong, H. J., Lee, K., Edwards, M. S., Park, M. G., Lee, B.-G. & Kim, K. Y. 2015a. Evaluation of carbon flux in vegetative bay based on ecosystem production and $CO_2$ exchange driven by coastal autotrophs. Algae 30:121-137. https://doi.org/10.4490/algae.2015.30.2.121
  27. Kim, S., Yoon, J. & Park, M. G. 2015b. Obligate mixotrophy of the pigmented dinoflagellate Polykrikos lebourae (Dinophyceae, Dinoflagellata). Algae 30:35-47. https://doi.org/10.4490/algae.2015.30.1.035
  28. Laws, E. A., Falkowski, P. G., Smith, W. O. Jr., Ducklow, H. & McCarthy, J. J. 2000. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14:1231-1246. https://doi.org/10.1029/1999GB001229
  29. Lee, K. 2001. Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol. Oceanogr. 46:1287-1297. https://doi.org/10.4319/lo.2001.46.6.1287
  30. Lee, K., Choi, S.-D., Park, G.-H., Wanninkhof, R., Peng, T. -H., Key, R. M., Sabine, C. L., Feely, R. A., Bullister, J. L., Millero, F. J. & Kozyr, A. 2003. An update anthropogenic $CO_2$ inventory in the Atlantic Ocean. Glob. Biogeochem. Cycles 17:1116.
  31. Lee, K., Millero, F. J., Byrne, R. H., Feely, R. A. & Wanninkhof, R. 2000. The recommended dissociation constants for carbonic acid in seawater. Geophys. Res. Lett. 27:229-232. https://doi.org/10.1029/1999GL002345
  32. Lee, K., Millero, F. J. & Campbell, D. M. 1996. The reliability of the thermodynamic constants for the dissociation of carbonic acid in seawater. Mar. Chem. 55:233-245. https://doi.org/10.1016/S0304-4203(96)00064-3
  33. Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J.-H., Kim, K. Y., Park, K.-T. & Lee, K. 2014a. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. https://doi.org/10.1016/j.jembe.2014.05.011
  34. Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81. https://doi.org/10.1016/j.hal.2016.09.008
  35. Lee, M. J., Jeong, H. J., Lee, K. H., Jang, S. H., Kim, J. H. & Kim, K. Y. 2015. Mixotrophy in the nematocyst-taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmannii. Harmful Algae 49:124-134. https://doi.org/10.1016/j.hal.2015.08.006
  36. Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014b. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152. https://doi.org/10.4490/algae.2014.29.2.137
  37. Legrand, C., Graneli, E. & Carlsson, P. 1998. Induced phagotrophy in the photosynthetic dinoflagellate Heterocapsa triquetra. Aquat. Microb. Ecol. 15:65-75. https://doi.org/10.3354/ame015065
  38. Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18. https://doi.org/10.1016/j.hal.2015.07.010
  39. Lueker, T. J., Dickson, A. G. & Keeling, C. D. 2000. Ocean $pCO_2$ calculated from dissolved inorganic carbon, alkalinity, and equations for $K_1$ and $K_2$: validation based on laboratory measurements of $CO_2$ in gas and seawater at equilibrium. Mar. Chem. 70:105-119. https://doi.org/10.1016/S0304-4203(00)00022-0
  40. Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18:897-907. https://doi.org/10.4319/lo.1973.18.6.0897
  41. Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100:80-94. https://doi.org/10.1016/j.marchem.2005.12.001
  42. Millero, F. J., Pierrot, D., Lee, K., Wanninkhof, R., Feely, R., Sabine, C. L., Key, R. M. & Takahashi, T. 2002. Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res. Part I Oceanogr. Res. Pap. 49:1705-1723. https://doi.org/10.1016/S0967-0637(02)00093-6
  43. Miyachi, S., Iwasaki, I. & Shiraiwa, Y. 2003. Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-$CO_2$ conditions. Photosynthesis Res. 77:139-153. https://doi.org/10.1023/A:1025817616865
  44. Nimer, N. A., Brownlee, C. & Merrett, M. J. 1999. Extracellular carbonic anhydrase facilitates carbon dioxide availability for photosynthesis in the marine dinoflagellate Prorocentrum micans. Plant Physiol. 120:105-111. https://doi.org/10.1104/pp.120.1.105
  45. Nygaard, K. & Tobiesen, A. 1993. Bacterivory in algae: a survival strategy during nutrient limitation. Limnol. Oceanogr. 38:273-279. https://doi.org/10.4319/lo.1993.38.2.0273
  46. Park, M. G., Kim, S., Kim, H. S., Myung, G., Kang, Y. G. & Yih, W. 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45:101-106. https://doi.org/10.3354/ame045101
  47. Reinfelder, J. R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 3:291-315. https://doi.org/10.1146/annurev-marine-120709-142720
  48. Rene, A., Camp, J. & Garces, E. 2014. Polykrikos tanit sp. nov., a new mixotrophic unarmoured pseudocolonial dinoflagellate from the NW Mediterranean Sea. Protist 165:81-92. https://doi.org/10.1016/j.protis.2013.12.001
  49. Rost, B., Richter, K.-U., Riebesell, U. & Hansen, P. J. 2006. Inorganic carbon acquisition in red tide dinoflagellates. Plant Cell Environ. 29:810-822. https://doi.org/10.1111/j.1365-3040.2005.01450.x
  50. Rost, B., Riebesell, U., Burkhardt, S. & Sultemeyer, D. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 48:55-67. https://doi.org/10.4319/lo.2003.48.1.0055
  51. Sabine, C. L., Feely, R. A., Key, R. M., Bullister, J. L., Millero, F. J., Lee, K., Peng, T.-H., Tilbrook, B., Ono, T. & Wong, C. S. 2002. Distribution of anthropogenic $CO_2$ in the Pacific Ocean. Glob. Biogeochem. Cycles 16:1083.
  52. Sabine, C. L., Key, R. M., Johnson, K. M., Millero, F. J., Poisson, A., Sarmiento, J. L., Wallace, D. W. R. & Winn, C. D. 1999. Anthropogenic $CO_2$ inventory of the Indian Ocean. Glob. Biogeochem. Cycles 13:179-198. https://doi.org/10.1029/1998GB900022
  53. Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
  54. Skovgaard, A., Hansen, P. J. & Stoecker, D. K. 2000. Physiology of the mixotrophic dinoflagellate Fragilidium subglobosum. I. Effects of phagotrophy and irradiance on photosynthesis and carbon content. Mar. Ecol. Prog. Ser. 201:129-136. https://doi.org/10.3354/meps201129
  55. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43. https://doi.org/10.1016/S0022-5320(69)90033-1
  56. Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x
  57. Wanninkhof, R., Lewis, E., Feely, R. A. & Millero, F. J. 1999. The optimal carbonate dissociation constants for determining surface water $pCO_2$ from alkalinity and total inorganic carbon. Mar. Chem. 65:291-301. https://doi.org/10.1016/S0304-4203(99)00021-3
  58. Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420. https://doi.org/10.1111/j.1550-7408.2009.00421.x

Cited by

  1. An advanced tool, droplet digital PCR (ddPCR), for absolute quantification of the red-tide dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae) vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.9.10
  2. (Corallinales, Rhodophyta) vol.57, pp.3, 2018, https://doi.org/10.2216/17-71.1
  3. A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms vol.33, pp.4, 2016, https://doi.org/10.4490/algae.2018.33.11.10
  4. Unlocking the black‐box of inorganic carbon‐uptake and utilization strategies among coral endosymbionts (Symbiodiniaceae) vol.65, pp.8, 2016, https://doi.org/10.1002/lno.11416