• Title/Summary/Keyword: Precursor Solution

Search Result 574, Processing Time 0.024 seconds

Thermal Stability and Electrical Properties of HfOxNy Gate Dielectrics with TaN Gate Electrode

  • Kim Jeon-Ho;Choi Kyu-Jeong;Seong Nak-Jin;Yoon Soon-Gil;Lee Won-Jae;Kim Jin-dong;Shin Woong-Chul;Ryu Sang-Ouk;Yoon Sung-Min;Yu Byoung-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.34-37
    • /
    • 2003
  • [ $HfO_2$ ] and $HfO_xN_y$ films were deposited by plasma-enhanced chemical vapor deposition using $Hf[OC(CH_3)_3]_4$ as the precursor in the absence of $O_2$. The crystallization temperature of the $HfO_xN_y$ films is higher than that of the $HfO_2$ film. Nitrogen incorporation in $HfO_xN_y$ was confirmed by auger electron spectroscopy analysis. After post deposition annealing (PDA) at 800$\Box$, the EOT increased from 1.34 to 1.6 nm in the $HfO_2$ thin films, whereas the increase of EOT was suppressed to less than 0.02 nm in the $HfO_xN_y$. The leakage current density decreased from 0.18 to 0.012 $A/cm^2$ with increasing PDA temperature in the $HfO_2$ films. But the leakage current density of $HfO_xN_y$ does not vary with increasing PDA temperature because an amorphous $HfO_xN_y$ films suppresses the diffusion of oxygen through the gate dielectric.

Improvement of Deposition Performance of Ultrasonic Spray Pyrolysis Deposition System through Atomizer Shape Modification (분무장치 형상 변경을 통한 초음파 열분해 증착 시스템의 증착 성능 개선)

  • Kim, Kyu-Eon;Lee, Jae-Hoo;Jeon, Jae-Keon;Park, Sung-Hwan;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.469-474
    • /
    • 2015
  • In ultrasonic spray pyrolysis deposition, a precursor solution is evaporated by an ultrasonic atomizer, then gas-carried into a furnace where the solute is separated from the water vapor. After condensation, polymerization, and nucleation, the solute oxide forms a thin film. To improve the deposition efficiency, the ultrasonic atomizer was studied to optimize the evaporated gas flow. The vat cover was redesigned, using three versions with different inlet factors being tested through a computational fluid dynamic analysis as well as a water evaporation experiment. The atomization rate with a hemispherical cover with a $30^{\circ}$ inlet was found to be 2.4 times higher than that with the original. This improvement was verified with fluorine-doped tin oxide spray pyrolysis deposition. The film obtained with the modified vat cover was 2.4 times thicker than that obtained with the original vat cover.

Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4 for Lithium-ion Batteries

  • Hur, Jaehyun;Kim, Il Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3553-3558
    • /
    • 2014
  • The reduced graphene oxide(rGO)/aluminum phosphate($AlPO_4$)-coated $LiMn_{1.5}Ni_{0.5}O_4$ (LMNO) cathode material has been developed by hydroxide precursor method for LMNO and by a facile solution based process for the coating with GO/$AlPO_4$ on the surface of LMNO, followed by annealing process. The amount of $AlPO_4$ has been varied from 0.5 wt % to 1.0 wt %, while the amount of rGO is maintained at 1.0 wt %. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The rGO/$AlPO_4$-coated LMNO electrodes exhibit better cyclic performance compared to that of pristine LMNO electrode. Specifically, rGO(1%)/$AlPO_4$(0.5%)- and rGO(1%)/$AlPO_4$(1%)-coated electrodes deliver a discharge capacity of, respectively, $123mAhg^{-1}$ and $122mAhg^{-1}$ at C/6 rate, with a capacity retention of, respectively, 96% and 98% at 100 cycles. Furthermore, the surface-modified LMNO electrodes demonstrate higher-rate capability. The rGO(1%)/$AlPO_4$(0.5%)-coated LMNO electrode shows the highest rate performance demonstrating a capacity retention of 91% at 10 C rate. The enhanced electrochemical performance can be attributed to (1) the suppression of the direct contact of electrode surface with the electrolyte, resulting in side reactions with the electrolyte due to the high cut-off voltage, and (2) smaller surface resistance and charge transfer resistance, which is confirmed by total polarization resistance and electrochemical impedance spectroscopy.

Synthesis and Characterization of NiAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing (역-마이셀 공정에 의한 NiAl2O4 무기안료 나노 분말의 합성 및 특성)

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.95-99
    • /
    • 2015
  • $NiAl_2O_4$ nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. $Ni(NO_3)_2{\cdot}6H_2O$ and $Al(NO_3)_3{\cdot}9H_2O$ were used for the precursor in order to synthesize $NiAl_2O_4$ nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at $800{\sim}1100^{\circ}C$ for 2h. The average size and distribution of synthesized $NiAl_2O_4$ powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized $NiAl_2O_4$ powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized $NiAl_2O_4$ powder increased with an increasing heating temperature. The synthesized $NiAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscopy(FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain $NiAl_2O_4$ spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.

Synthesis of Fine Copper Powders from CuO-H2O Slurry by Wet-reduction Method (액상환원법에 의한 CuO-H2O 슬러리로부터 미세 구리분말의 제조)

  • Ahn Jong-Gwan;Kim Dong-Jin;Lee Ik-Kyu;Lee Jaeryeung;Huanzhen Liang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • Ultrafine copper powder was prepared from $CuO-H_2O$ slurry with hydrazine, a reductant, under $70^{\circ}C$. The influence of various reaction parameters such as temperature, reaction time, molar ratio of $N_2H_4$, PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of $N_2H_4/Cu$ and the temperature. When the ratio of $N_2H_4/Cu$ was higher than 2.5 and the temperature was higher than $60^{\circ}C$, CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about $0.5{\mu}m$.

Effect of heating rate on calcination heat treatment of YBCO thin films by DCA-MOD method (DCA-MOD 법으로 YBCO 박막 제조시 하소열처리의 승온속도 효과)

  • Kim, Byeong-Joo;Kim, Hye-Jin;Cho, Han-Woo;Kwon, Youn-Kyung;Ryu, Jung-Hee;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.186-192
    • /
    • 2007
  • High $J_c\;YBa_2Cu_3O_{7-x}$ superconducting films have been fabricated $LaAlO_3(100)$ substrate by MOD method using dichloroacetic acid(DCA) as chelating solvent for preparing precursor solution. Heating rate was varied in order to optimize the calcination heat treatment condition in DCA-MOD method. Coated films were calcined at lower temperature up to $500^{\circ}C$ in flowing humid oxygen atmosphere. The heating rate was calcined from $13.3^{\circ}C/min\;to\;0.28^{\circ}C/min$. Conversion heat treatment was performed $800^{\circ}C$ for 2 h in flowing Ar gas containing 1000 ppm oxygen with a humidity of 9.45%. Surface and cross sectional SEM microstructures showed that particle sizes were increased with heating rate at a calcination step. The amount of pores was increased with heating rate in the calcined films. Dense microstructure and sharp texture were developed in an YBCO films after conversion heat treatment. A high critical current density (Jc) of $1.26MA/cm^2$ (@77 K and self-field) was obtained for the YBCO film which was prepared with a heating rate of $0.28^{\circ}C/min$.

  • PDF

Nitric oxide(NO)-mediated relaxation of bovine retractor penis muscle (소 음경후인근의 Nitric oxide(NO) 매개성 이완)

  • Yang, Il-suk;Chang, Hee-jung;Kang, Tong-mook;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.599-605
    • /
    • 1996
  • This study was designed to examine the mechanism of penile erection in adult bull by analyzing the responses of bovine proximal retractor penile muscle strips(BRP) to electtical field stimulation(EFS), exogenous nitric oxide(NO), NO synthesis precursor(L-arginine), NO synthase inhibitors(L-NAME, L-NMMA), guanylate cyclase inhibitor(methylene blue) and nonspecific potassium channel blocker(tetraethylammonium, TEA) treatments. Isometric tension of BRP was measured using physiograph. Results were summarized as follows: 1. EFS of nonadrenergic noncholinrgic(NANC) nerve in BRP produced frequency-dependent inhibitory responses to the contraction induced by co-treatment of epinephrine, guanethidine and atropine. The inhibitory responses to EFS were blocked by tetrodotoxin(TTX, $1{\mu}M$). 2. Treatment of L-NAME ($10,\;20{\mu}M$) inhibited the relaxation to EFS whereas L-NMMA ($100{\mu}M$) had no effect. 3. Treatment of NO($20,\;40{\mu}M$; as an acidified solution of $NaNO_2$) induced concentration-dependent relaxation whereas preincubation of TTX($1{\mu}M$) and L-NAME($20{\mu}M$) had no effect on the relaxation response. 4. L-arginine treatment(10mM) blocked the inhibitory effect of L-NAME($20{\mu}M$). 5. Pretreatment of methylene blue($40{\mu}M$) reduced the NANC-induced relaxation of BRP. 6. Tetraethylammonium(TEA, 80mM) reduced NANC relaxation. These results suggest that NO may act as a NANC neurotransmitter in BRP and the effects might be mediated by cGMP and potassium channel.

  • PDF

Fabrication and Sensing Capability of Cholesterol Sensors Based on ZnO Nanofibers (산화아연 나노섬유 기반 콜레스테롤 센서의 제작과 성능)

  • Jo, So Yeon;Kim, Ji Yeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.281-285
    • /
    • 2013
  • In the present work, ZnO nanofibers were applied to electrode materials for the detection of cholesterol. ZnO nanofibers were synthesized using the electrospinning technique with zinc acetate as a precursor. Electrospinning-synthesized ZnO nanofibers were uniformly distributed by properly controlling the electrospinning parameters. After the calcination treatment, nanofibers of pure ZnO phase were synthesized. Then, these fibers were successfully placed on Au-coated glass substrates by dispersion of ZnO nanofibers in ethanol, dropping, and drying, in sequence. Cholesterol oxidase was then immobilized onto the surface of the ZnO nanofibers. To enhance the immobilization, Nafion was additionally applied. The sensing performances of the fabricated ZnO nanofibers-based sensors were analyzed by cyclic voltammetry in terms of cholesterol concentration ranging from 100 to 400 mg/dl. In the I-V curves, measured by cyclic voltammetry, the ZnO nanofiber-based sensor showed a proportional current behavior with cholesterol concentrations in phosphate buffered saline solution. The sensitivity was measured and found to be $30.7nA/mM{\cdot}cm^2$, which is comparable to the values reported in the literature. After not only optimizing the shape of the ZnO nanofibers but also improving the adhesion nature between the ZnO nanofibers and the Au conducting layer, these fibers can be a good candidate for electrode materials in devices used to detect low concentrations of cholesterol in blood.

Effect of heat-treatment parameter of YBCO film by TFA-MOD process (TFA-MOD법에 의한 YBCO 박막의 열처리변수 효과)

  • Jang, Seok-Hern;Lim, Jun-Hyung;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Joo, Jin-Ho;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • We fabricated YBCO coated conductors (CCs) by TFA-MOD process and evaluated microstructure, texture formation, and critical temperature ($T_c$) and current ($I_c$). YBCO precursor solution was synthesized using metal-trifluoroacetates and dip coated on $LaAlO_3$(LAO) substrate. The phase formation and microstructure was characterized by X-ray diffraction and scanning electron microscopy (SEM) and the degree of texture was evaluated by pole-figure analysis. The CC was heat-treated in various calcining temperatures ($370^{\circ}C-460^{\circ}C$) and firing temperatures ($750^{\circ}C-800^{\circ}C$). As fired at $775^{\circ}C$ for 4h, the CC had the highest $T_c$ of 89.5 K and $I_c$ of 40 A/cm-width ($J_c=2.0\;MA/cm^2$). Microstructural observation indicated that the YBCO film was dense and homogeneous and had a strong cube texture without formation of second phase and its in-plane full-width at half-maxima; $5.2^{\circ}$ under optimum condition.

  • PDF

Synthesis of Boron Nitride Nanotubes via inductively Coupled thermal Plasma process Catalyzed by Solid-state ammonium Chloride

  • Chang, Mi Se;Nam, Young Gyun;Yang, Sangsun;Kim, Kyung Tae;Yu, Ji Hun;Kim, Yong-Jin;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2018
  • Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and high-efficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (${\sim}4000^{\circ}C$) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of $H_2$ gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride ($NH_4Cl$), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + $H_2$, successful fabrication of BNNTs synthesized from $h-BN+NH_4Cl$ is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from $h-BN+NH_4Cl$.