• Title/Summary/Keyword: Preconsolidation

Search Result 65, Processing Time 0.02 seconds

Study on the Consolidation Characteristics of Marine Clay by CRS and Conventional Tests (일정변헝률 및 표준압밀시험을 이용한 해성점토의 압밀특성 연구)

  • Lee, U-Jin;Im, Hyeong-Deok;Lee, Won-Je
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 1998
  • A series of conventional tests and CRS consolidation tests with different rates of strain were performed to investigate the consolidation characteristics of marine clay. Preconsolidation pressures were evaluated by applying previously proposed methods for both the conventional tests and CRS tests results in order to check the legitimacy of those methods. The effects of strain rate on effective consolidation stress strain relationship, porewater pressure, and preconsolidation pressure were also discussed It was found that the effective stress strain relationship and the preconsolidation pressure are a function of strain rate imposed during consolidation test, but compression index isn't. The preconsolidation pressure ratio ($a_2=\sigma'_{pCRS}/\sigma'_{pConv}$)of marine clay appears proportional to the logarithm of strain rate, with average values ranging from 1.11 to 1.30 for strain rates between $1\timesx10^{-4} %/sec\; and\; 4\times10 %/sec$. The porewater pressure ratio during CRS teats does not exceed 6.0% except when the strain rate is $6.67\times10^{-4} %/sec$. Coefficient of consolidation or coefficient of permeability at normally consolidated range was not affected by the type of consolidation tests and the strain rate. Typical values of compression index (C.), coefficient of consolidation(c.), and coefficient of permeability (k.) at normally consolidated range were 0.56-0.95, $0.56\times10^{-4}~3.0\times10^{-4}cm2/sec,\; and\; 2.0\times10^{-8}~7.0\time10^{-4}cm/sec,$ respectively.

  • PDF

Piezocone Neural Network Model for Estimation of Preconsolidation Pressure of Korean Soft Soils (국내 연약지반의 선행압밀하중 추정을 위한 피에조콘 인공신경망 모델)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.77-87
    • /
    • 2004
  • In this paper a back-propagation neural network model is developed to estimate the preconsolidation pressure of Korean soft soils based on 176 oedometer tests and 63 piezocone test results, which were compiled from 11 sites - western and southern parts of Korea. Only 147 data were used for the training of the neural network and 29 data, which were not used during the training phase, were used for the verification of trained network. Empirical and theoretical models were compared with the developed neural network model. A simple 4-4-9-1 multi-layered neural network has been developed. The cone tip resistance $q_T$ penetration pore pressure $u_2$, total overburden pressure $\sigma_{vo}$ and effective overburden pressure $\sigma'_{vo}$ were selected as input variables. The developed neural network model was validated by comparing the prediction results of the proposed neural network model for the new data which were not used for the training of the model with the measured preconsolidation pressures. It can also predict more precise and reliable preconsolidation pressures than the analytical and empirical model. Furthermore, it can be carefully concluded that neural network model can be used as a generalized model for prediction of preconsolidation pressure throughout Korea since developed model shows good performance for the new data which were not used in both training and testing data.

Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments. (교대말뚝기초의 측방유동에 관한 원심모형실험)

  • Choi, Dong-Hyurk;Jeong, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF

Consolidation Characteristics of Clays Considering the Aging Effect (Aging Effect를 고려한 점성토의 압밀특성)

  • 김영수;이상웅;김대만;현영환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.109-118
    • /
    • 2004
  • The consolidation of clay occurs with time lag, and this kind of lag can be separated into plastic lag and hydraulic lag. In this study, CRS tests were performed to research the effect of original secondary consolidation of the clay with respect to the characteristics of consolidation. Test results showed that plastic time lag was one of the key factors to get the preconsolidation pressure, and suggested the formula of the Quasi-preconsolidation pressure obtained from the relationship between consolidation time lag and consolidation pressures. In addition though the characteristics of coefficient of consolidation show a wide range of values, after passing the double preconsolidation point, it showed the tendency to converge into the constant value. The coefficient of permeability in normally consolidated state is related to its void ratio, and the permeability variables, n and $C_1$ were determined by the test results using the equation suggested by Samarasinghe. et. al. And then the equation was compared with the Kozeny-Carman's equation. Because of delayed compression caused by consolidation time lag, aging effect could be also found in the relationship between coefficient of permeability and void ratio.

A Study on the Determination of Depth of Soft Ground by Cone Resistance (피조콘 관입저항치($q_c$)를 이용한 연약지반 심도결정에 관한 연구)

  • 신윤섭;김민철;김연정;김영웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.701-708
    • /
    • 2003
  • Recently, piezocone penetration test is frequently conformed in order to estimate the characteristics of soft ground with standard penetration test, generally used in the past. The soil characteristics, such as cone penetration resistance, friction resistence and excessive pore water pressure, can be evaluated continuously through the piezocone penetration test. In Incheon International Airport 2nd phase site preparation, standard penetration test and piezocone penetration test were used in order to increase the confidence for determination of soft ground depth. And the compressible layer was determined by the comparison between the preconsolidation pressure and the designed increase pressure. As the results, the relation between standard penetration test and piezocone penetration test shows q$_{c}$=(1.09~l.63)N at the soft ground, determined by 5/30 N value. And q$_{c}$=(1.21~l.98)N was shown at the point of compressible layer, evaluated by the preconsolidation pressure. These results were applied to determination for the depth of soft ground and to design the improvement for the soft clay.lay.

  • PDF

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Strain-rate-dependent Consolidation Characteristics of Busan Clay (부산점토의 변형률 속도 의존적인 압밀특성)

  • Kim Yun-Tae;Jo Sang-Chan;Jo Gi-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.127-135
    • /
    • 2005
  • In order to analyze effects of strain rate on consolidation characteristics of Busan clay, a series of constant rate of strain (CRS) consolidation tests with different strain rate and incremental loading tests (ILT) were performed. From experimental test results on Busan clay, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurring during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendency to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure was observed after the end of loading without change of total stress on the incremental loading test, which phenomenon is called Mandel-Cryer effect. It was also found that rapid generation of excess pore pressure took place due to collapse of soil structure as effective stress approached to preconsolidation pressure.

A Study on the Determination of Construction Depth of Vertical Drain by Cone Resistance (콘 관입저항치를 이용한 수직배수재 타설심도 결정에 관한 연구)

  • Kim, Yeon-Jung;Kim, Nam-Ho;Shin Yun-Sup
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.261-269
    • /
    • 2006
  • Recently, piezocone penetration test is frequently used in order to estimate the characteristics of soft ground with standard penetration test; generally used in the past In this study, standard penetration test, piezocone penetration test, driving resistance of vertical drain were used in order to increase the confidence for determination of soft ground depth. And the compressible layer was determined by the comparison between the preconsolidation pressure and the designed increase pressure. As the results, the relation between standard penetration test and piezocone penetration test shows $q_c$=(1.09~1.63)N at the soft ground, determined by 5/30 N value. And $q_c$(1.21~1.98)N was shown at the point of compressible layer, evaluated by the preconsolidation pressure. And driving resistance of vertical drain is 70 f/$cm^2$ which is equal to 10kgf/$cm^2$ cone penetration resistance.

  • PDF

Estimating Maximum Past Pressures for Dredged and Reclaimed Ground (준설매립지반의 선행압밀하중 산정)

  • Baek, Won-Jin;Lee, Song;Jeong, Yong-Eun;Noh, Tae-Gil;Yang, Tae-Seon;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.61-79
    • /
    • 2008
  • Consolidation settlements on marine dredged clays are often greatly and potentially damaging to structures. Currently, large-scale projects are in planning or progressing in Korea. These projects have been performed on thick and soft clay layers. So, the evaluation of consolidation characteristics for dredged and reclaimed ground is very important in design and construction. Therefore, in this study, a series of conventional consolidation tests were performed to investigate the consolidation characteristics of marine dredged clays near Gwang-yang Port. Preconsolidation pressures were evaluated by applying previously proposed 8 methods for the conventional tests results in order to evaluate the legitimacy of these methods. In these methods, when estimating maximum past pressures for dredged and reclaimed ground, it was proved that Becker (1987), Silva (1970), Sridharan (1991)'s methods are excellent in legitimacy.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF