• Title/Summary/Keyword: Preconditioning

Search Result 261, Processing Time 0.028 seconds

Modulation of Cardiac ATP-Sensitive $K^+$ Channels Via Signal Transduction Mechanisms During Ischemic Preconditioning

  • Han, Jin;Kim, Nari;Seog, Dae-Hyun;Kim, Euiyong
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • In several species, a short period of ischemic preconditioning protects the heart by reducing the size of infarcts resulting from subsequent prolonged bouts of ischemia. The mechanism by which activation of ATP-sensitive $K^+$($K_ATP$) channels could provide the memory associated with ischemic preconditioning is still under debate. Several signal transduction pathways have been implicated in the mechanisms of protection induced by ischemic preconditioning. The exact receptor-coupled pathways involved in preconditioning remain to be identified. Likely extracellular agonists are those whose circulating levels increase under conditions that activate $K_ATP$ channels; these conditions include ischemia and ischemic preconditioning. Potential physiological agonists include the following: (1) nitric oxide; (2) catecholamine; (3) adenosine; (4) acetylcholine; (5) bradykinin and (6) prostacycline. The purpose of this review was to understand the mechanism by which biological signal transduction mechanism acts as a link in one or more known receptor-mediated pathways to increase $K_ATP$ channel activity during ischemic preconditioning.

  • PDF

COMPUTATIONS ON PRECONDITIONING CUBIC SPLINE COLLOCATION METHOD OF ELLIPTIC EQUATIONS

  • Lee, Yong-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.371-386
    • /
    • 2001
  • In this work we investigate the finite element preconditioning method for the $C^1$-cubic spline collocation discretizations for an elliptic operator A defined by $Au := -{\Delta}u + a_1u_x+a_2u_y+a_0u$ in the unit square with some boundary conditions. We compute the condition number and the numerical solution of the preconditioning system for the several example problems. Finally, we compare the this preconditioning system with the another preconditioning system.

A Study of Convergence Enhancement Using Preconditioning Methods at Two Dimensional Compressible Low Speed Flows (저속 압축성 유동에서 예조건화 방법을 이용한 수렴성 증진에 대한 연구)

  • Lee J. E.;Park S. H.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.7-14
    • /
    • 2004
  • It is well known that preconditioning methods are efficient for convergence acceleration at compressible low Mach number flows. In this study, the original Euler equations and three preconditioners nondimensionalized differently are implemented in two dimensional inviscid bump flows using the 3rd order MUSCL and DADI schemes as flux discretization and time integration respectively. The multigrid and local time stepping methods are also used to accelerate the convergence. The test case indicates that a properly modified local preconditioning technique involving concepts of a global preconditioning one produces Mach number independent convergence. Besides, an asymptotic analysis for properties of preconditioning methods is added.

  • PDF

Reliability Evaluation of Semiconductor using Ultrasound (초음파를 이용한 반도체의 신뢰성 평가)

  • Jang, Hyo-Seong;Ha, Job;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.598-606
    • /
    • 2001
  • Recently, semiconductor packages trend to be thinner, which makes difficult to detect defects therein. A preconditioning test is generally performed to evaluate the reliability of semiconductor packages. The test procedure includes two scanning acoustic microscope (SAM) tests at the beginning and end of the entire test, in order to help detect physical defects such as delaminations and package cracks. In particular, of primary concern are package cracks and delaminations caused by moisture absorbed under ambient conditions. This paper discusses the failure mechanism associated with the moisture absorbed and encapsulated in semiconductors, and the use SAM to detect failures such as tracks and delaminations grown during the preconditioning test.

  • PDF

A Study on Convergence Enhancement Using Preconditioning Methods in Compressible Low Speed Flows (저속 압축성 유동에서 예조건화 방법을 이용한 수렴성 증진에 대한 연구)

  • Lee, Jae-Eun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.8-17
    • /
    • 2005
  • It is well known that preconditioning methods are efficient for convergence acceleration in the compressible low Mach number flows. In this study, the original Euler equations and three differently nondimensionalized preconditioning methods are implemented in two dimensional inviscid bump flows using the 3rd order MUSCL and DADI schemes as numerical flux discretization and time integration, respectively. The multigrid and local time stepping methods are also used to accelerate the convergence. The test case indicates that a properly modified local preconditioning technique involving concepts of a global preconditioning allows Mach number independent convergence. Besides, an asymptotic analysis for properties of preconditioning methods is added.

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Effects of Temperature and Moisture Level during Preconditioning on Germination and Seedling Elongation of Soybean Seeds with and without Osmoconditioning (온도, 종자수분 및 삼투처리가 대두의 발아와 묘신장에 미치는 영향)

  • Seong, Rak-Chun;Minor, Harry C.;Park, Keun-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.61-66
    • /
    • 1987
  • Germination and seedling length of soybean seeds (cultivar: Williams) with and without polyethylene glycol-8000 (PEG) treatments were measured following preconditioning at two temperatures (15 and 30$^{\circ}C$) and two moisture levels 〔low (30 percent) and high (50 percent seed water content)〕 for 0, 2, 4, or 8 days. A split-split plot in time was used with four replications. Observations were made after two days of germination at 30$^{\circ}C$ Seedling growth accelerated with two days of preconditioning at 30$^{\circ}C$, but was reduced as preconditioning duration increased up to eight days at the same temperature. PEG treated preconditioned seeds exhibited reduced moisture uptake and seedling growth. Preconditioning at a high moisture level increased seedling moisture content and also increased seedling length until four days of preconditioning duration. Seedling dry weight decreased when preconditioning temperature was 30$^{\circ}C$ and when the high moisture level of preconditioning was continued for eight days.

  • PDF

Effect of Preconditioning Ischemia on Endothelial Dysfunction Produced by Ischemia-Reperfusion in Rabbit Coronary Artery

  • Suh, Suk-Hyo;Park, Yee-Tae;Kim, Woong-Heum;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.51-59
    • /
    • 1995
  • This study was designed to test whether or not 1) ischemia-reperfusion attenuates endothelium-dependent relaxation of coronary arteries and 2) preconditioning protects the arterial endothelium from ischemia-reperfusion injury. In anesthetized open chest rabbits, branches of the left circumflex artery were exposed to different combinations of the experimental conditions; ischemia (15 minutes), ischemia (15 minutes)-reperfusion (10 minutes), preconditioning ischemia, and pre-conditioning fellowed by ischemia-reperfusion. Preconditioning consisted of 3 occlusions of 2-min duration, each followed by n 5-min reperfusion. Rings of the artery exposed to the experimental condition and of normal left anterior descending coronary artery were prepared and suspended for isometric force measurement in organ chambers containing Krebs Ringer bicarbonate solution. The rings were contracted with 29.6 mM KCI. Ischemia alone did not attenuate endothelium-dependent relaxation by acetylcholine. However, ischemia-reperfusion significantly impaired endothelium-dependent relaxation. Endothelium-independent relaxation by sodium nitroprusside was not impaired by ischemia-reperfusion and the constrictive response to acetylcholine was not altered in reperfused rings without endothelium, compared with control rings. Arterial rings exposed to preconditioning followed by ischemia-reperfusion exhibited impaired endothelium-dependent relaxation by acetyl-choline. However, although preconditioning not fellowed by ischemia-reperfusion, attenuated endothelium-dependent relaxation at low concentrations of acetylcholine, the magnitude of the impairment by preconditioning followed by ischemia-reperfusion was significantly less than that of the impairment by ischemia-reperfusion alone. These data demonstrate that ischemia-reperfusion significantly attenuates endothelium-dependent relaxation by producing endothelial dysfunction and preconditioning Protects the endothelium of coronary arteries from ischemia-reperfusion injury.

  • PDF

DEPENDENCE OF WEIGHTING PARAMETER IN PRECONDITIONING METHOD FOR SOLVING LOW MACH NUMBER FLOW (낮은 Mach수유동 해석을 위한 Preconditioning 가중계수의 의존성)

  • An, Y.J.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • A dependence of weighting parameter in preconditioning method for solving low Mach number flow with incompressible flow nature is investigated. The present preconditioning method employs a finite-difference method applied Roe‘s flux difference splitting approximation with the MUSCL-TVD scheme and 4th-order Runge-Kutta method in curvilinear coordinates. From the computational results of benchmark flows through a 2-D backward-facing step duct it is confirmed that there exists a suitable value of the weighting parameter for accurate and stable computation. A useful method to determine the weighting parameter is introduced. With this method, high accuracy and stable computational results were obtained for the flow with low Mach number in the range of Mach number less than 0.3.

Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: Evidences and possible mechanisms

  • Aulakh, Amritpal Singh;Randhawa, Puneet Kaur;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2017
  • Remote ischemic preconditioning (RIPC) is an intrinsic phenomenon whereby 3~4 consecutive ischemia-reperfusion cycles to a remote tissue (non-cardiac) increases the tolerance of the myocardium to sustained ischemia-reperfusion induced injury. Remote ischemic preconditioning induces the local release of chemical mediators which activate the sensory nerve endings to convey signals to the brain. The latter consequently stimulates the efferent nerve endings innervating the myocardium to induce cardioprotection. Indeed, RIPC-induced cardioprotective effects are reliant on the presence of intact neuronal pathways, which has been confirmed using nerve resection of nerves including femoral nerve, vagus nerve, and sciatic nerve. The involvement of neurogenic signaling has been further substantiated using various pharmacological modulators including hexamethonium and trimetaphan. The present review focuses on the potential involvement of neurogenic pathways in mediating remote ischemic preconditioning-induced cardioprotection.