• Title/Summary/Keyword: Precoating

Search Result 15, Processing Time 0.022 seconds

Brazing Adhesion Properties of Ag Coated W-Ag Electric Contact on the Cu Substrate (Ag 코팅한 W-Ag 전기접점/Cu 모재간의 브레이징 접합 특성)

  • Kang Hyun-Goo;Kang Yun-Sung;Lee Jai-Sung
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.18-24
    • /
    • 2006
  • The brazing adhesion properties of Ag coated W-Ag electric contact on the Cu substrate have been investigated in therms of microstructure, phase equilibrium and adhesion strength. Precoating of Ag layer ($3{\mu}m$ in thickness) on the $W-40\%Ag$ contact material was done by electro-plating method. Subsequently the brazing treatment was conducted by inserting BCuP-5 filler metal (Ag-Cu-P alloy) layer between Ag coated W-Ag and Cu substrate and annealing at $710^{\circ}C$ in $H_2$ atmosphere. The optimum brazing temperature of $710^{\circ}C$ was semi-empirically calculated on the basis of the Cu atomic diffusion profile in Ag layer of commercial electric contact produced by the same brazing process. As a mechanical test of the electric contact after brazing treatment the adhesion strength between the electric contact and Cu substrate was measured using Instron. The microstructure and phase equilibrium study revealed that the sound interlayer structure was formed by relatively low brazing treatment at $710^{\circ}C$. Thin Ag electro-plated layer precoated on the electric contact ($3{\mu}m$ in thickness) is thought to be enough for high adhesion strength arid sound microstructure in interface layer.

Deposition of Uranium Ions with Modified Pyrrole Polymer Film Electrode (우라늄이온 포집을 위한 수식된 피를 고분자 피막전극)

  • Cha Seong-Keuck;Lee Sang Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.141-145
    • /
    • 2000
  • Anodically Polymerized conducting Polypyrrole film electrode was employed to Pick up uranyl ion with the type of Gr/ppy, xylenol orange modified electrode. To have Porous and oriented ppy film, NBR was applied as precoating agent. The rate constant of polymerization was $3.22\times10^{-3}s^{-1}$ which was 1.6 times smaller value than bare graphite surface. The deposited amount of uranyl iou on $1.70Ccm^{-2}$ of ppy was $1.55\times10^{-4}g$. The matrix effect in artificial seawater was $6.8\%$. The polymer film electrode has a diffusion controlled process in conduction, but the modified Gr/ppy, $X.O^{4-}UO^+$ type was influenced on the ion doping and electronic conduction of film itself owing to increasing of impedance. The capacitance of electrical double layer was respectively enhanced to 56 and 130 times in Gr/ppy, $X.O.^{4-}$ and Gr/ppy, $X.O^{4-}UO^+$ than Grippy type electrode.

Elementary Studies on the Fabrication and Characteristics of One-dimensional Nanomaterials

  • Kim, Hyeon-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.150-150
    • /
    • 2012
  • 본 연구는 1차원 나노 구조의 합성과 기초적 분석에 관한 연구로써 특히 무기 산화물 나노재료를 그 대상으로 하였다. 내용으로는 첫째, 1차원 코어 나노와이어의 합성을 하였고 Thermal evaporation, substrate의 가열, 그리고 MOCVD 를 사용한 결과들을 나열한다. 둘째, 코어-쉘 나노와이어를 제작하기 위하여 특히 쉘층의 제작방법을 연구하였는데 PECVD, ALD, 그리고 sputtering에 의한 결과들을 나열하고 간단히 설명한다. Thermal evaporation에 의한 1차원 나노와이어 합성의 경우는 MgO의 예를 들었는데 MgO 나노와이어는 Au가 증착된 기판을 열처리하여 Au dot를 형성하고 이의 morphology를 조절하여 최적의 나노와이어 합성조건을 선정하였다. 이로써 기판 morphology가 나노선의 성장및 형상에 영향을 준다는 사실을 알게 되었다. 이 사실은 In2O3기판을 사용하고 이의 표면거칠기를 열처리로 조절하므로써 역시 나노와이어의 성장을 촉진하는 방법을 찾아내었다. 또한 thermal evaporation공법은 source분말의 선택에 따라 다양한 소재를 제작가능하다는 결과를 제시하였다. 예를 들면 SiOx 층이 precoating된 chamber내에서 MgO 나노선을 합성하는 것과 동일한 조건으로 실험을 진행하면 Mg2SiO4 나노와이어가 형성된 것을 확인하였다. 또한 Sn과 MgB2 분말을 함께 적용할 경우 Sn tip을 가진 MgO 나노와이어를 얻을 수 있었다. 이는 Sn이 동시에 촉매의 역할을 하였기 때문일 것으로 추정된다. 한편 Sn과 Bi 혼합분말을 적용한 경우 Bi2Sn2O7 신소재 tip을 포함한 SnO2 나노와이어를 얻을 수 있었다. 이 경우 Bi원자가 적절한 촉매의 역할을 수행한 것으로 사료된다. Substrate의 가열공법에서는 Si wafer상에 각종 금속 즉 Au, Ag, Cu, Co, Mo, W, Pt, Pd등 초박막을 DC sputter 로 형성한후 annealing하는 기술을 사용하였다. 특기할 만한 것은 Co를 사용한 경우 나노와이어의 spring구조를 얻을 수 있었다는 점이다. MOCVD에 의하여는 Ga2O3및 Bi2O3 나노와이어를 비교적 저온에서 합성하였고 In2O3의 경우는 독특한 나노구조를 형성하였고 이의 결정학적 특성에 대하여 조사하였다.

  • PDF

A Study on the Diatomaceous Earth Filtration of Settling Basin Effluent (정수장 침전지 유출수의 규조토 여과에 관한 연구)

  • Shin Dae-Yewn;Ji Sung-Nam;Moon Ok-Ran;Kim Ji-Yeong;Suh Dong-Woo;Cho Young-Kwan
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.410-416
    • /
    • 2004
  • The objective of this investigation was to evaluate applicability of precoat filtration that can be substituted for rapid sand filter of conventional water treatment system(CWTS). Precoat filter used in this experiment are candle filter. Element disk of candle are pore size $10{\mu}m(R),\;20{\mu}m(B)$ And diatomaceous earth are cake pore size $3.5{\mu}m$(Standard Super- Cel; A), $7{\mu}m$(Hyflo Super-Cel; B) and $17{\mu}m$(Celite 545RV; C). $2kg/m^2$ diatomaceous earth is used for precoating, it coated candle in $5{\sim}6mm$ thickness. 1. Al adsorption dosages by diatomaceous earth used in experimental we Hyflo Super-Cel 0.843mg/g, Standard Super-Cel 0.782 mg/g and Celite 545RV 0.766 mg/g. 2. Filtrate of precoat filter during 60min are R-C combination 20.7($m^3/m^2$)>B-C 18.3($m^3/m^2$)>B-B 15.0($m^3/m^2$)> R-B 12.9($m^3/m^2$)> R-A 11,093($l/m^2$). 3. Water quality of precoat filter effluent are thus. $KMnO_4$ consumption are $1.10{\sim}2.20mg/l$, removal rate are $30.9{\sim}65.6\%$. They are R-A 1.10(mg/l)(removal rate $65.6\%$). R-C(2.20 mg/l)(removal rate $30.9\%$). 4. $Al^{3+}$ are not detected with all combination, removal rate $100\%$. 5. Considering water quality and flux, continued running time of R-A combination is 7 hr. Accumulated filtrate are $74.4 m^3/m^2$, average flux is $177.2 l/m^2{\cdot}min$. And filtrate per diatomaceous earth 1g are 37.2 l. 6. R-A effluent's water quality are $KMnO_4$ Consumption 1.10(mg/l), DOC 1.161 mg/1, Al 0.0 mg/1, $UV_{254}$ 0.016/cm, Turbidity 0.1(NTU). R-A combination is suitable to precoat filtration for the settling basin effluent treatment.

Inhibitory Effects of Cinnamon, Clove and Lemongrass Essential Oils against Biofilm Formation by Food Poisoning Bacteria (식중독 미생물의 biofilm 형성에 대한 계피, 정향 및 레몬그래스 정유의 억제 효과)

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.430-439
    • /
    • 2021
  • Essential oils with excellent antibacterial activity were used to study the inhibitory effect against the six types of food poisoning biofilms formed on the surfaces of polyethylene (PE) and stainless steel (SS) that are widely used for food processing instruments and containers. The antibacterial activity of 20 kinds of essential oils was tested using the disk diffusion method. The result showed the degree of antibacterial activity in the following order: cinnamon> clove> lemongrass> peppermint> pine needle (highest to lowest). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of cinnamon and clove oil were in the range of 0.63-1.25 mg/mL and 1.25-2.50 mg/mL, respectively. The MIC and MBC of lemongrass oil were 1.25-2.50 mg/mL and 2.50-5.00 mg/mL, respectively, showing slightly less antibacterial activity. Although the preventive effect of three types of essential oils on the biofilm formation differed slightly depending on food poisoning bacteria, PE, and SS, it was found that the precoating of 0.5% cinnamon, clove, and lemongrass oil on the PE and SS affects the formation of biofilm. Increased essential oil concentration significantly inhibited the biofilm formation for all food poisoning bacteria (P<0.05), and biofilms of Listeria monocytogenes and Staphylococcus aureus were not formed when treated with 0.5% cinnamon and clove oil. The elimination effect of food poisoning bacteria biofilms formed on the surfaces of PE and SS differed depending on the type of food poisoning bacteria. Still, the biofilm elimination effect increased as the essential oil concentration increased, and the biofilm elimination rate of clove oil was generally high. Therefore, this study found that the cinnamon and clove essential oils (0.5%) are suitable natural materials that effectively prevent, inhibit, and remove the biofilms formed by the food poisoning bacteria on the surfaces of polyethylene and stainless steel.